Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (4): 9-17    DOI: 10.13523/j.cb.2012013
    
The Role and Expression Regulation of MiR-5047 in the Proliferation and Migration of Breast Cancer Cells
LU Yu-xiang,LI Yuan,FANG Dan-dan,WANG Xue-bo,YANG Wan-peng,CHU Yuan-kui(),YANG Hua()
Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
Download: HTML   PDF(11165KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To explore the expression of miR-5047 in breast cancer cells and its role in breast cancer cell proliferation and migration, and to clarify the role of decitabine (DAC) in the regulation of miR-5047 expression. The expression level of miR-5047 in human breast cancer cell lines and normal breast epithelial cells MCF10A was detected by real-time quantitative PCR (qRT-PCR). Transfect miR-5047 mimic and negative control mimic NC into MDA-MB-231 and MCF7 cells, respectively, and verify the transfection efficiency by qRT-PCR. Plate cloning experiments, MTT experiments, and scratch healing experiments were used to detect the proliferation and migration ability of breast cancer cells, and qRT-PCR and Western blot methods were used to detect the expression of related genes and proteins after over-expression of miR-5047. MDA-MB-231 and MCF-7 cells were treated with DAC at final concentrations of 5 μmol/L and 10 μmol/L, and qRT-PCR was used to detect the effect of DAC on miR-5047 expression under different concentrations and treatment time. At the same time, the effect of DAC on the epithelial mesenchymal transition (EMT) of breast cancer cells was detected by morphological observation and Western blot. Compared with normal breast epithelial cells MCF-10A, the expression of miR-5047 in breast cancer cells was significantly down-regulated. Overexpression of miR-5047 can significantly inhibit the proliferation and migration of breast cancer cells, promote the expression of epithelial cell marker E-cadherin, and inhibit the expression of mesenchymal cell marker Vimentin. The expression of miR-5047 can promote the expression of epithelial cell marker E-cadherin and inhibit the expression of mesenchymal cell marker Vimentin. After treating MDA-MB-231 and MCF7 cells with different concentrations of DAC, the expression of miR-5047 was enhanced, and the effect was most significant when 10 μmol/L DAC was used for 48 h. DAC can induce epithelial transformation of MDA-MB-231 cells. The expression of miR-5047 is significantly down-regulated in breast cancer cell lines. Overexpression of miR-5047 can inhibit the proliferation and migration of breast cancer cells. The low expression of miR-5047 in breast cancer cells can inhibit the proliferation and migration of breast cancer cells. DAC treatment can enhance the expression of miR-5047 in breast cancer cells and induce epithelial transformation of the cells.



Key wordsMiR-5047      Breast cancer      Decitabine (DAC)      Cell proliferation/migration      Epithelial-mesenchymal transition     
Received: 07 December 2020      Published: 30 April 2021
ZTFLH:  Q819  
Corresponding Authors: Yuan-kui CHU,Hua YANG     E-mail: chuyuankui@163.com;yanghua-126@163.com
Cite this article:

LU Yu-xiang,LI Yuan,FANG Dan-dan,WANG Xue-bo,YANG Wan-peng,CHU Yuan-kui,YANG Hua. The Role and Expression Regulation of MiR-5047 in the Proliferation and Migration of Breast Cancer Cells. China Biotechnology, 2021, 41(4): 9-17.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2012013     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I4/9

Name Forward primer(5'→3') Reverse primer(5'→3')
miR-5047 TTGCAGCTGCGGTTGTAAG CAGTGCAGGGTCCGAGGTAT
miR-5047 RT GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACCTTAC
U6 CTCGCTTCGGCAGCACA AACGCTTCACGAATTTGCGT
U6 RT TGGTGTCGTGGAGTCG
PCNA GCTGCGTAGTAAAGATGCCA CAGAAAACTTCACCCCGTC
MMP2 GCTTCCAGGGCACATCCTA CTTCTGAGTTCCCACCAACAGT
Vimentin CAGGCAAAGCAGGAGTCAA AGTGGGTGTCAACCAGAGGA
E-cadherin GAGGTCGGTGCCCGTATT CGTTGGTCTTGGGGTCTGT
GAPDH AAATCCCATCACCATCTTCC ATGACCCTTTTGGCTCCC
Table 1 Primer sequences
Fig.1 Relative expression of miR-5047 in normal breast epithelial cells and breast cancer cells * P<0.05,** P<0.01
Fig.2 Measurement of miR-5047 expression in MDA-MB-231 cells and MCF7 cells after transfection of miR-5047 mimics *** P<0.001
Fig.3 Effect of miR-5047 overexpression on the proliferation and migration ability of breast cancer cells (a) Clone formation assay (b) MTT assay (c) Scratch healing assay. N.S represents having no significant difference, ** P<0.01, *** P<0.001, **** P<0.0001
Fig.4 miR-5047 overexpression induces epithelial mesenchymal transition in breast cancer cells Effects of miR-5047 overexpression on mRNA (a) and protein (b) expression of PCNA, MMP2, Vimentin and E-cadherin in breast cancer cells, * P<0.05, ** P<0.01
Fig. 5 Expression of miR-5047 induced by different concentrations of decitabine at different time points N.S represents having no significant difference; * P<0.05, ** P<0.01, *** P<0.001
Fig. 6 DAC induced MET of MDA-MB-231cells (a) Morphological observation of MDA-MB-231cells after 5 μmol/L or 10 μmol/L DAC treatment(magnified 100 times) (b) Detection of cell proliferation, migration and EMT related genes in MDA-MB-231 cells after 5 μmol/L or 10 μmol/L DAC treatment. N.S represents having no significant difference; * P<0.05, ** P<0.01
[1]   Siegel R L, Miller K D, Jemal A. Cancer statistics, 2020. CA: A Cancer Journal for Clinicians, 2020,70(1):7-30.
[2]   Ahmad A. Breast cancer statistics: recent trends. Advances in Experimental Medicine and Biology, 2019,1152:1-7.
doi: 10.1007/978-3-030-20301-6_1 pmid: 31456176
[3]   Vishnoi A, Rani S. MiRNA biogenesis and regulation of diseases: an overview. Methods in Molecular Biology (Clifton, N J), 2017,1509:1-10.
[4]   Hayes J, Peruzzi P P, Lawler S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends in Molecular Medicine, 2014,20(8):460-469.
doi: 10.1016/j.molmed.2014.06.005 pmid: 25027972
[5]   Guo D, Guo J, Li X, et al. Enhanced motility and proliferation by miR-10b/FUT8/p-AKT axis in breast cancer cells. Oncology Letters, 2018,16(2):2097-2104.
doi: 10.3892/ol.2018.8891 pmid: 30008906
[6]   Li H L, Bian C J, Liao L M, et al. MiR-17-5p promotes human breast cancer cell migration and invasion through suppression of HBP1. Breast Cancer Research and Treatment, 2011,126(3):565-575.
pmid: 20505989
[7]   Li F F. Expression and correlation of miR-124 and miR-126 in breast cancer. Oncology Letters, 2019,17(6):5115-5119.
doi: 10.3892/ol.2019.10184 pmid: 31186724
[8]   Guo J, Chen M M, Ai G H, et al. Hsa_circ_0023404 enhances cervical cancer metastasis and chemoresistance through VEGFA and autophagy signaling by sponging miR-5047. Biomedicine & Pharmacotherapy, 2019,115:108957.
pmid: 31082770
[9]   王斌, 肖何, 张志敏, 等. MiR-5047通过靶向下调TIPE3表达抑制前列腺癌细胞迁移和增殖. 山西医科大学学报, 2020,51(4):307-312.
[9]   Wang B, Xiao H, Zhang Z M, et al. The miR-5047 inhibits prostate cancer migration and proliferation by down-regulating TIPE3 expression. Journal of Shanxi Medical University, 2020,51(4):307-312.
[10]   Coughlin S S. Epidemiology of breast cancer in women. Advances in Experimental Medicine and Biology, 2019,1152:9-29.
doi: 10.1007/978-3-030-20301-6_2 pmid: 31456177
[11]   Kanchan R K, Siddiqui J A, Mahapatra S, et al. MicroRNAs orchestrate pathophysiology of breast cancer brain metastasis: advances in therapy. Molecular Cancer, 2020,19(1):29.
doi: 10.1186/s12943-020-1140-x pmid: 32059676
[12]   Wang R C, Yu Z, Chen F, et al. MiR-300 regulates the epithelial-mesenchymal transition and invasion of hepatocellular carcinoma by targeting the FAK/PI3K/AKT signaling pathway. Biomedicine & Pharmacotherapy, 2018,103:1632-1642.
pmid: 29864952
[13]   Chang R M, Xu J F, Fang F, et al. MicroRNA-130b promotes proliferation and EMT-induced metastasis via PTEN/p-AKT/HIF-1α signaling. Tumor Biology, 2016,37(8):10609-10619.
doi: 10.1007/s13277-016-4919-z pmid: 26861561
[14]   Samantarrai D, Dash S, Chhetri B, et al. Genomic and epigenomic cross-talks in the regulatory landscape of miRNAs in breast cancer. Molecular Cancer Research: MCR, 2013,11(4):315-328.
doi: 10.1158/1541-7786.MCR-12-0649 pmid: 23360796
[15]   Shivakumar M, Lee Y, Bang L S, et al. Identification of epigenetic interactions between miRNA and DNA methylation associated with gene expression as potential prognostic markers in bladder cancer. BMC Medical Genomics, 2017,10(Suppl 1):30.
pmid: 28589857
[16]   Loginov V I, Burdennyy A M, Pronina I V, et al. Novel miRNA genes hypermethylated in breast cancer. Molekuliarnaia Biologiia, 2016,50(5):797-802.
pmid: 27830681
[17]   Yin X D, Xiang T X, Li L L, et al. DACT1, an antagonist to Wnt/β-catenin signaling, suppresses tumor cell growth and is frequently silenced in breast cancer. Breast Cancer Research, 2013,15(2):R23.
doi: 10.1186/bcr3399 pmid: 23497530
[18]   Borges S, Döppler H, Perez E A, et al. Pharmacologic reversion of epigenetic silencing of the PRKD1promoter blocks breast tumor cell invasion and metastasis. Breast Cancer Research, 2013,15(2):R66.
pmid: 23971832
[19]   Díaz-López A, Moreno-Bueno G, Cano A. Role of microRNA in epithelial to mesenchymal transition and metastasis and clinical perspectives. Cancer Management and Research, 2014,6:205-216.
pmid: 24812525
[20]   陈梦娇, 王华, 陈锦超, 等. 地西他滨诱导miR-200c/141表达抑制肾癌细胞侵袭迁移. 中国现代应用药学, 2019,36(13):1601-1607.
[20]   Chen M J, Wang H, Chen J C, et al. Decitabine inhibit invasion and migration ability of renal cell carcinoma cells by up-regulating MiR-200c/141. Chinese Journal of Modern Applied Pharmacy, 2019,36(13):1601-1607.
[21]   Jiang Y Y, Ren W, Wang W J, et al. Inhibitor of β-catenin and TCF (ICAT) promotes cervical cancer growth and metastasis by disrupting E-cadherin/β-catenin complex. Oncology Reports, 2017,38(5):2597-2606.
doi: 10.3892/or.2017.5962 pmid: 29048651
[1] XU An-jian,LI Yan-meng,WU Shan-na,ZHANG Bei,YAO Jing-yi. PHP14 Plays a Role in Epithelial-Mesenchymal Transition of AML-12Cell Through Interaction with Vimentin[J]. China Biotechnology, 2021, 41(2/3): 1-6.
[2] Jie XIAN,Xue QIN,You-de CAO. Numb Inhibits the Ubiquitination Degradation of p53 by HDM2 in Triple-negative Breast Cancer[J]. China Biotechnology, 2019, 39(7): 1-7.
[3] Qun WAN,Meng-yao LIU,Jing XIA,Li-yao GOU,Min TANG,Shi-lei SUN,Yan ZHANG. The Effects of LncRNA SNHG3 on the Proliferation, Migration and Invasion of Human Breast Cancer MCF-7 Cells[J]. China Biotechnology, 2019, 39(1): 13-20.
[4] LI Ai-fang, GU Yue, LI Xue-ru, SUN Hui, ZHA He, XIE Jia-qing, ZHAO Jia-li, ZHOU Lan. Effects of S100A6 on Proliferation and Migration of Human Cervical Cancer Cells and Its Mechanism[J]. China Biotechnology, 2017, 37(2): 8-14.
[5] SONG Li-jie, WANG Li, YANG Chuan-hong, LAI Huang-wen, WANG Jie. Effect of Cas9 Protein on Biological and Ultrastructural Characteristics of the Human Bone-seeking Breast Cancer Cell Line[J]. China Biotechnology, 2016, 36(7): 1-6.
[6] LI Yu-qiang, ZHU Zhi-tu, WANG Wei, LI Chen, XU Na, WANG Yu, LI Nan, SUN Hong-zhi. Effect of Silencing Nup88 Gene by RNA Interference on Growth and Invasion in Human Breast Cancer MCF-7 Cell[J]. China Biotechnology, 2014, 34(9): 31-39.
[7] LI Fei-fei, FANG Jing, MA Qiong, FU Hui, MAO Jian-ping. Natural Borneol Liquid Induced Cancer Cells Apoptosis[J]. China Biotechnology, 2013, 33(5): 22-27.
[8] GUO Chun-fang, ZHANG Yang-de, WANG Ji-wei, PAN Yi-feng, LIAO Ming-mei, WANG Ning. Characterization and the Anti-tumor Effect of Doxorubicin Flexible Liposome in vitro[J]. China Biotechnology, 2013, 33(3): 9-14.
[9] WU Chen, TIAN Huan-na, WANG Yuan-yuan, LIU Fang-ming, ZHANG Xiao-kang, LI Qin-jian, XIE Yuan-yuan. Effect of GALNT14 on the Migration of Human Breast Cancer Cells MCF-7[J]. China Biotechnology, 2012, 32(07): 8-15.
[10] SUN Xiao-xiao, WANG Ke, FENG Hong-lei, LIU Yue-hong, WAN Shao-heng, LUO Jin-yong, ZHANG Yan. Effects and Possible Mechanism of BMP9 on the Bone Metastasis of Human Breast Cancer Cells MDA-MB-231[J]. China Biotechnology, 2012, 32(03): 7-13.
[11] XIE Qiu-ling, LU Jia, LIU Lan, ZHANG Chuan-yu, GUO Xin-yong, PENG Wen-dan, CHEN Xiao-jia. Study of Human PDGFR β Promoter in Different Human Breast Cancer Cells[J]. China Biotechnology, 2011, 31(04): 18-24.
[12] ZHAO Wei, HAN Hai-bo, ZHANG Zhi-qian. The Effects of Human PEX, a C-terminal Hemopexin-like Domain of MMP-2, on the Growth and Metastasis of Human Breast Cancer BICR-H1 Cells[J]. China Biotechnology, 2011, 31(03): 13-17.
[13] XU Liang, GU Yu-Chao, SHI Han, FU Wen-Xi, XU Wen-Gong. STAT3 Silencing Inhibits Migration of Murine Breast Cancer Cells in vitro[J]. China Biotechnology, 2010, 30(06): 1-7.
[14] LIU Hai-Yan- Gu-Yu-Chao- Fu-Wen-Xi- Xu-Wen-Gong. Akt1 Silencing Inhibits Lung Metastasis of Murine Breast Cancer Cells[J]. China Biotechnology, 2009, 29(03): 14-19.
[15] Yu-chao GU . Regulation of gene expression profile by Twist in murine breast cancer cell[J]. China Biotechnology, 2008, 28(4): 1-6.