Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (1-2): 146-153    DOI: 10.13523/j.cb.1905007
Orginal Article     
Application of Peptide Nucleic Acid in Virus Detection and Therapy
SUN Heng1,WANG Jing1,ZENG Ling-gao2,WANG Jian-hua1,**()
1 Bioengineering College of Chongqing University, Chongqing 400044, China
2 Chongqing Institute for Food and Drug Control, Chongqing 401121, China
Download: HTML   PDF(577KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Peptide nucleic acid (PNA) is an oligonucleotide analog that replaces the sugar phosphate backbone with polypeptide backbone, and known as a third-generation antisense nucleic acid. The electrically neutral polypeptide backbone structure of PNA enables it to retain the high target affinity of the sugar phosphate chain oligonucleotide, and at the same time, it has stronger enzyme stability and thermal stability than the sugar phosphate backbone, which has become the hotspot in the research of oligonucleotide analogues. On the one hand, the rapid, effective and accurate detection performance of PNA on virus replication and mutation level makes it of great significance for further treatment of diseases. On the other hand, the life cycle of the virus is regulated by the PNA based on its sequence specificity and dose dependency at the gene level. Therefore, as to effective inhibit the survival and replication of the virus in the host cell. The latest progress and mechanism of PNA in the detection of different viruses and the treatment of viral diseases has been reviewed based on the literature of the past decade, which is expected to provide new guidances and ideas for the development of clinical products of peptide nucleic acids.



Key wordsPeptide nucleic acid      Detection      Antiviral     
Received: 07 May 2019      Published: 27 March 2020
ZTFLH:  Q819  
Corresponding Authors: Jian-hua WANG     E-mail: wjh@cqu.edu.cn
Cite this article:

SUN Heng,WANG Jing,ZENG Ling-gao,WANG Jian-hua. Application of Peptide Nucleic Acid in Virus Detection and Therapy. China Biotechnology, 2020, 40(1-2): 146-153.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.1905007     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I1-2/146

Fig.1 The structure of PNA and DNA
PNA名称 序列(N→C端) 靶标 检测限 应用 参考文献
PANArray ACATCATCCATATAAC 逆转录酶M204V 102cps/ml HBV [12]
PNA-YIDD1 GTTATATCGATGATGTGG 逆转录酶204 0.01% HBV [11]
PNA-QCM TCCTTTTTT-OOO-TTTTTTCCT 基因组DNA序列 8.6pg/L HBV [14]
PNA-3a CACACATATCACCC 3a核心/E1区 1.8×10-12mol HCV [15]
PNA-SAM ATGTACCCCATGAGGTCGGC 核心/E1区 9.5pg/μl HCV [16]
PNA-HCV CCCAATTATACTTGCGGC M2基因 5% H1N1 [17]
bisPNA-AZO TCTCTTCC-AZO-CCTTCTCTTCCAGGA NS基因 6.0×104~6.0×105pfu/ml H1N1 [18]
PNA-ISH CTGGCTTTAATTTTA NL43WC001基因pol区 HIV [19]
Table 1 PNA sequence for virus detection
PNA名称 序列(5'-3') 靶标 IC50 应用 参考文献
PNA 2052 TAGACGTAAAGATAC 衣壳化信号ε 10nmol DHBV [22]
PNA 2053 GCAATGTAGACGTAA 衣壳化信号ε 10nmol DHBV [22,25]
PNA-DR GCAGAGGTGAA pgRNA DR序列 HBV [27]
肽-asPNA-寡核苷酸支架 AGGTGAAAAAGTTGCAT HBV DNA 1 814~1 830 HBV [28]
PNA 6 TACGAGACCTCCCGGGG IRES 314~330 HCV [30]
PNA 10 GTGCTCATGG IRES的IV环区域 54nmol HCV [31]
PNA-SL3 AGATGGAGCCACC X-RNA SL结构1~13 HCV [32]
PNA-SL3-15 TAAGATGGAGCCACC X-RNA SL结构1~15 HCV [32,41]
dbPNA TLTTTQTLLL dsRNA 多种IAV亚型 [34]
TiO2·PL·DNA/PNA GCAAAAGCAGGGTAGA NP基因 3μg/ml H3N2 [35]
PNA-TAR TCCCAGGCTCAGATCT TAR 0.8μmol HIV [37-39]
PNA J3U5 TCGCGGCTTCATACA 3'-UTR 10 931~10 945 JEV [40]
PNA J3U6 TCTCGCGGCTTCATACA 3'-UTR 10 931~10 947 JEV [40]
PNA J3U2 TCGGCGCTCTGTGCC 3'-UTR 10 928~10 942 JEV [40-41]
FS PNA AGCCCTGTAGACGAC PRF 13 458~13 472 4.4μmol SARS-CoV [41]
Table 2 PNA sequence for virus therapy
Fig.2 The structure of PNA analogs
[1]   Gupta A, Mishra A, Puri N . Peptide nucleic acids: Advanced tools for biomedical applications. Journal of Biotechnology, 2017,259:148-159.
[2]   曾芳, 王建华, 刘春冬 . 修饰性肽核酸的合成研究进展. 中国药学杂志, 2015,50(22):1936-1945.
[2]   Zeng F, Wang J H, Liu C D . Progress of synthesis of modified peptide nucleic acid. Chin Pharm, 2015,50(22):1936-1945.
[3]   刘春冬, 王建华, 曾芳 . 修饰性肽核酸的细胞转运. 生物工程学报, 2016,32(3):292-305.
[3]   Liu C D, Wang J H, Zeng F . Cellular delivery of modified peptide nucleic acids: a review. Chinese Journal of Biotechnology, 2016,32(3):292-305.
[4]   Nielsen P E, Egholm M, Berg R H , et al. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science, 1991,254(5037):1497-1500.
[5]   Egholm M, Buchardt O, Christensen L , et al. PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature, 1993,365(6446):566-568.
[6]   Dean D A . Peptide nucleic acids: versatile tools for gene therapy strategies. Advanced Drug Delivery Reviews, 2000,44(2):81-95.
[7]   Sharma C, Awasthi S K . Versatility of peptide nucleic acids (PNAs): role in chemical biology, drug discovery and origins of life. Chemical Biology & Drug Design, 2016,89(1):16-37.
[8]   Demidov V V, Potaman V N, Frank-Kamenetskii M D , et al. Stability of peptide nucleic acids in human serum and cellular extracts. Biochemical Pharmacology, 1994,48(6):1310-1313.
[9]   Quijano E, Bahal R, Ricciardi A , et al. Therapeutic peptide nucleic acids: principles, limitations, and opportunities. Yale Journal of Biology & Medicine, 2017,90(4):583-598.
[10]   Liu C D, Wang J H, Huang S , et al. Self-assembled nanoparticles for cellular delivery of peptide nucleic acid using amphiphilic N,N,N-trimethyl-O-alkyl chitosan derivatives. Journal of Materials Science Materials in Medicine, 2018,29:114.
[11]   Shuhei H, Yoichi Y, Shigeru Y , et al. Sensitive assay for quantification of hepatitis B virus mutants by use of a minor groove binder probe and peptide nucleic acids. Journal of Clinical Microbiology, 2010,48(12):4487-4494.
[12]   Jang H, Kim J, Choi J J , et al. Peptide nucleic acid array for detection of point mutations in hepatitis B virus associated with antiviral resistance. Journal of Clinical Microbiology, 2010,48(9):3127-3131.
[13]   Choi Y J, Hong S K, Lee S H , et al. Evaluation of peptide nucleic acid array for the detection of hepatitis B virus mutations associated with antiviral resistance. Archives of Virology, 2011,156(9):1517-1524.
[14]   Yao C Y, Zhu T Y, Tang J , et al. Hybridization assay of hepatitis B virus by QCM peptide nucleic acid biosensor. Biosensors & Bioelectronics, 2008,23(6):879-885.
[15]   Pournaghi-Azar M H, Ahour F, Hejazi M S . Direct detection and discrimination of double-stranded oligonucleotide corresponding to hepatitis C virus genotype 3a using an electrochemical DNA biosensor based on peptide nucleic acid and double-stranded DNA hybridization. Analytical & Bioanalytical Chemistry, 2010,397(8):3581-3587.
[16]   Ahour F, Pournaghi-Azar M H, Alipour E , et al. Detection and discrimination of recombinant plasmid encoding hepatitis C virus core/E1 gene based on PNA and double-stranded DNA hybridization. Biosensors & Bioelectronics, 2013,45:287-291.
[17]   Tsao K C, Chiou C C, Chen T L , et al. Detection of low copies of drug-resistant influenza viral gene by a single-tube reaction using peptide nucleic acid as both PCR clamp and sensor probe. J Microbiol Immunol Infect, 2014,47(3):254-256.
[18]   Kaihatsu K, Sawada S, Nakamura S , et al. Sequence-specific and visual identification of the influenza virus NS gene by azobenzene-tethered bis-peptide nucleic acid. PLoS One, 2013,8(5):e64017.
[19]   Murakami T, Hagiwara T, Yamamoto K , et al. A novel method for detecting HIV-1 by non-radioactive in situ hybridization: application of a peptide nucleic acid probe and catalysed signal amplification. Journal of Pathology, 2001,194(1):130-135.
[20]   Zhao C, Hoppe T, Setty M K H G , et al. Quantification of plasma HIV RNA using chemically engineered peptide nucleic acids. Nature Communications, 2014,5(4):5079.
[21]   Ndeboko B, Lemamy G J, Nielsen P E , et al. Therapeutic potential of cell penetrating peptides (CPPs) and cationic polymers for chronic hepatitis B. International Journal of Molecular Sciences, 2015,16(12):28230-28241.
[22]   Robaczewska M, Narayan R, Seigneres B , et al. Sequence-specific inhibition of duck hepatitis B virus reverse transcription by peptide nucleic acids (PNA). Journal of Hepatology, 2005,42(2):180-187.
[23]   Koppelhus U, Shiraishi T, Zachar V , et al. Improved cellular activity of antisense peptide nucleic acids by conjugation to a cationic peptide-lipid(CatLip)domain. Bioconjugate Chemistry, 2008,19(8):1526-1534.
[24]   Abdul F, Ndeboko B, Buronfosse T , et al. Potent inhibition of late stages of hepadnavirus replication by a modified cell penetrating peptide. PLoS One, 2012,7(11):e48721.
[25]   Ndeboko B, Ramamurthy N, Lemamy G J , et al. Role of cell-penetrating peptides in intracellular delivery of peptide nucleic acids targeting hepadnaviral replication. Mol Ther Nucleic Acids, 2017,9:162-169.
[26]   Ren X D, Nie H, Guo J T . HBV drug resistance development, testing, and prevention. Current Hepatitis Reports, 2010,9(4):223-230.
[27]   Zeng Z, Han S S, Hong W , et al. A Tat-conjugated peptide nucleic acid Tat-PNA-DR Inhibits hepatitis B virus replication in vitro and in vivo by targeting LTR direct repeats of HBV RNA. Molecular Therapy Nucleic Acids, 2016,5(3):e295.
[28]   Zhao X L, Chen B C, Han J C , et al. Delivery of cell-penetrating peptide-peptide nucleic acid conjugates by assembly on an oligonucleotide scaffold. Scientific Reports, 2015,5:17640.
[29]   Al-Harbi R A K, Abdel-Rahman A H . Synthesis and anti-hepatitis B virus activity of new pyrimidine peptide nucleic acid analogs. Chemistry of Heterocyclic Compounds, 2012,47(10):1290-1297.
[30]   Nulf C J, Corey D . Intracellular inhibition of hepatitis C virus (HCV) internal ribosomal entry site (IRES)-dependent translation by peptide nucleic acids (PNAs) and locked nucleic acids (LNAs). Nucleic Acids Research, 2004,32(13):3792-3798.
[31]   Alotte C, Martin A, Caldarelli S A , et al. Short peptide nucleic acids (PNA) inhibit hepatitis C virus internal ribosome entry site (IRES) dependent translation in vitro. Antiviral Research, 2008,80(3):280-287.
[32]   Ahn D G, Shim S B, Moon J E , et al. Interference of hepatitis C virus replication in cell culture by antisense peptide nucleic acids targeting the X-RNA. Journal of Viral Hepatitis, 2011,18(7):e298-e306.
[33]   Friedland B . In vitro antiviral activity of a peptide-nucleic acid solution against the human immunodeficiency virus and influenza A virus. Journal of the Royal Society of Health, 1991,111(5):170-171.
[34]   Kesy J, Patil K M, Kumar S R , et al. A short chemically modified dsRNA-binding PNA (dbPNA) inhibits influenza viral replication by targeting viral RNA panhandle structure. Bioconjugate Chemistry, 2019,30(3):931-943.
[35]   Amirkhanov R N, Mazurkova N A, Amirkhanov N V , et al. Composites of peptide nucleic acids with titanium dioxide nanoparticles. IV. Antiviral activity of nanocomposites containing DNA/PNA duplexes. Russian Journal of Bioorganic Chemistry, 2015,41(2):140-146.
[36]   Pandey V N, Upadhyay A, Chaubey B . Prospects for antisense peptide nucleic acid (PNA) therapies for HIV. Expert Opin Biol Ther, 2009,9(8):975-989.
[37]   Chaubey B, Tripathi S, Pandey V N . Single acute-dose and repeat-doses toxicity of anti-HIV-1 PNA TAR-penetratin conjugate after intraperitoneal administration to mice. Oligonucleotides, 2008,18(1):9-20.
[38]   Upadhyay A, Ponzio N M, Pandey V N . Immunological response to peptide nucleic acid and its peptide conjugate targeted to transactivation response (TAR) region of HIV-1 RNA genome. Oligonucleotides, 2008,18(4):329-335.
[39]   Das I, Désiré J, Manvar D , et al. A peptide nucleic acid-aminosugar conjugate targeting transactivation response element of HIV-1 RNA genome shows a high bioavailability in human cells and strongly inhibits tat-mediated transactivation of HIV-1 transcription. Journal of Medicinal Chemistry, 2012,55(13):6021-6032.
[40]   Yoo J S, Kim C M, Kim J H , et al. Inhibition of Japanese encephalitis virus replication by peptide nucleic acids targeting cis-acting elements on the plus- and minus-strands of viral RNA. Antiviral Research, 2009,82(3):122-133.
[41]   Ahn D G, Lee W, Choi J K , et al. Interference of ribosomal frameshifting by antisense peptide nucleic acids suppresses SARS coronavirus replication. Antiviral Res, 2011,91(1):1-10.
[42]   王建华, 郭泽琴 . 肽核酸在分子生物学技术中的应用. 中国生物工程杂志, 2013,33(01):90-94.
[42]   Wang J H, Guo Z Q . Application of peptide nucleic acid in molecular biotechnology. China Biotechnology, 2013,33(1):90-94.
[43]   Liu C D, Wang J H, Xie Y , et al. Synthesis and DNA/RNA complementation studies of peptide nucleic acids containing 5-halouracils. Medchemcomm, 2016,8(2):385-389.
[1] MA Qiao-ni,WANG Meng,ZHU Xing-quan. Research Advances in Recombinase-aided Amplification Technology and Its Application in Rapid Detection of Pathogenic Microorganisms[J]. China Biotechnology, 2021, 41(6): 45-49.
[2] LI Shuai-peng,REN He,AN Zhan-fei,YANG Yan-kun,BAI Zhong-hu. The Development of Chemiluminescence Immunoassay Detection Method for Thrombomodulin[J]. China Biotechnology, 2021, 41(4): 30-36.
[3] ZHANG Xue-jie,TANG Jia-bao,LI Ting-dong,GE Sheng-xiang. Advances in Single Molecule Immunoassay[J]. China Biotechnology, 2021, 41(4): 47-54.
[4] ZHOU Zi-hui,LIU Xiao-xian,HUANG Hao,XIAO Rui,QI Ke-zong,WANG Sheng-qi. Application of Surface-enhanced Raman Scattering Based onNano-signal Tags in Pathogen Detection[J]. China Biotechnology, 2021, 41(2/3): 70-77.
[5] ZHANG Zheng-yan,CHEN Yu,SONG Li-jie,SU Zheng-quan,ZHANG Hai-yan. Advances in the Application of Field Effect Transistor Biosensor in Biomedical Detection[J]. China Biotechnology, 2021, 41(10): 73-88.
[6] HUANG Zhao-hong,HUANG Yun-hong,HUANG Yan-mei,LONG Zhong-er,SHAN Shan. Advances in Detection and Typing of Diarrheal Escherichia coli with PCR[J]. China Biotechnology, 2020, 40(7): 82-90.
[7] PAN Tong-tong,CHEN Yong-ping. Research Progress of Key Techniques for Severe/Critical Type of Novel Coronavirus Pneumonia[J]. China Biotechnology, 2020, 40(1-2): 78-83.
[8] Zuo-bo XU,Jiu-bing LI,Hong-lei DING. Research Progress in Mycoplasma hyopneumonia Detection Technology[J]. China Biotechnology, 2019, 39(4): 78-83.
[9] Si-nan QIN,Lu-hua TANG,Wen-hui GAO. Preparation of Enrofloxacin Molecular Imprinting Electro- chemical Sensor and Its Application to Rapid Detection of Foods[J]. China Biotechnology, 2019, 39(3): 65-74.
[10] LIU Guo-fang,LIU Xiao-zhi,GAO Jian,WANG Zhi-ming. Effects of Host Cell Residual Proteins on the Quality and Their Quality Control of Monoclonal Antibody[J]. China Biotechnology, 2019, 39(10): 105-110.
[11] Hong-yuan CHEN,Hong-yan CHEN,Chun QIAO,Jian-yong LI,Da-ru LU. The Establishment of a Novel Detection System for MYD88 L265P in Waldenström’s Macroglobulinemia[J]. China Biotechnology, 2018, 38(9): 35-40.
[12] Hao QIU,Ming-shu WANG,An-chun CHENG. γPNA——A New Type of High Efficient Peptide Nucleic Acid[J]. China Biotechnology, 2018, 38(2): 75-81.
[13] Shuai CUI,Zuo-ping WANG,Jiang-hui YU,Guo-ying XIAO. Event-specific Detection Methods of Genetically Modified Rice BPL9K-2[J]. China Biotechnology, 2018, 38(11): 32-41.
[14] WU Yi, ZHANG Li-ying, QUAN Chun-shan, ZHONG Mei-ling, WANG Lu-lu, WANG Guan-tian. Synthesis of the ComX Pheromone Precursor Peptide in Bacillus amyloliquefaciens Q-426 Quorum Sensing System[J]. China Biotechnology, 2017, 37(5): 38-44.
[15] WANG Dong-dong, ZHANG Guo-li, YUE Yu-huan, WU Guang-mou, TIAN Yuan, LIU Yu-ling, JI Yuan-gang, WANG Jing-peng, LI Jian, PAN Rong-rong, MA Hong-yuan. Construction, Expression and Preliminary Study on Activity of Human Bivalent Single Chain Antibody Against the Alpha-toxin of Clostridium perfringens Type A[J]. China Biotechnology, 2017, 37(4): 18-25.