Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2024, Vol. 44 Issue (2/3): 39-47    DOI: 10.13523/j.cb.2307018
研究报告     
通过失活Sec途径阻遏蛋白和胞外蛋白酶提高地衣芽孢杆菌产碱性蛋白酶的能力*
郝漫,惠威,邵岚莹,史超硕,路福平,张会图**()
天津科技大学生物工程学院 应用微生物与酶工程实验室 天津 300457
Improving the Ability of Bacillus licheniformis to Produce Alkaline Protease by Inactivating Sec Pathway Repressor Protein and Extracellular Proteases
HAO Man,HUI Wei,SHAO Lanying,SHI Chaoshuo,LU Fuping,ZHANG Huitu**()
Laboratory of Applied Microbiology and Enzyme Engineering, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
 全文: PDF(1228 KB)   HTML
摘要:

为了探究Sec分泌途径对地衣芽孢杆菌(Bacillus licheniformis) 碱性蛋白酶产量的影响,对地衣芽孢杆菌 TCCC11470 (BL Δupp Δeps Δpgs)中的分子伴侣阻遏蛋白基因hrcA和基因组中3个Sec途径分泌的胞外蛋白酶基因eprbprvpr进行叠加敲除。通过对比分析基因缺失前后的碱性蛋白酶酶活力发现,敲除菌株 TCCC11470ΔhrcA和TCCC11470ΔhrcAΔeprΔbprΔvpr在 42 h 的碱性蛋白酶酶活力分别达到 18 521.2 U/mL和20 048.5 U/mL,分别高出对照菌株 BLΔuppΔepsΔpgs (14 478.6 U/mL) 27.9%和38.5%。这一结果指出,通过改进Sec分泌通路可以显著提升碱性蛋白酶的催化效能,为构建优化的工业酶生产宿主提供了新思路和研究方向。

关键词: 地衣芽孢杆菌Sec分泌途径碱性蛋白酶HrcA胞外蛋白酶    
Abstract:

In order to investigate the influence of the Sec secretion pathway on alkaline protease production in Bacillus licheniformis, the molecular chaperone-blocking protein gene hrcA and the three extracellular protease genes epr, bpr, and vpr in the genome of B. licheniformis TCCC11470 (BLΔuppΔepsΔpgs) were sequentially deleted. By comparing the alkaline protease activities before and after gene deletion, it was found that the knockout strains TCCC11470ΔhrcA and TCCC11470ΔhrcAΔeprΔbprΔvpr reached alkaline protease activities of 18 521.2 U/mL and 20 048.5 U/mL after 42 hours, respectively, which were 27.9% and 38.5% higher than the control strain BLΔuppΔepsΔpgs (14 478.6 U/mL), respectively. These results indicate that optimizing the Sec secretion pathway can effectively enhance the enzymatic activity of alkaline protease, providing new insights and research strategies for the construction of industrial enzyme production hosts.

Key words: Bacillus licheniformis    Sec secretion pathway    Alkaline protease    HrcA    Extracellular protease
收稿日期: 2023-07-13 出版日期: 2024-04-03
ZTFLH:  Q814  
基金资助: *绿色生物制造国家重点研发专项(2021YFC2100400)
通讯作者: **电子信箱:hzhang@tust.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郝漫
惠威
邵岚莹
史超硕
路福平
张会图

引用本文:

郝漫, 惠威, 邵岚莹, 史超硕, 路福平, 张会图. 通过失活Sec途径阻遏蛋白和胞外蛋白酶提高地衣芽孢杆菌产碱性蛋白酶的能力*[J]. 中国生物工程杂志, 2024, 44(2/3): 39-47.

HAO Man, HUI Wei, SHAO Lanying, SHI Chaoshuo, LU Fuping, ZHANG Huitu. Improving the Ability of Bacillus licheniformis to Produce Alkaline Protease by Inactivating Sec Pathway Repressor Protein and Extracellular Proteases. China Biotechnology, 2024, 44(2/3): 39-47.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2307018        https://manu60.magtech.com.cn/biotech/CN/Y2024/V44/I2/3/39

图1  地衣芽孢杆菌碱性蛋白酶表达和分泌过程
菌株/质粒 特征/用途 来源
菌株
E. coli JM109 质粒扩增 中国科学院微生物研究所
E. coli EC135 pM.Bam 甲基化修饰 中国科学院微生物研究所
BLΔUEP ΔuppΔepsΔpgs;出发菌株 本实验室保藏
BLΔUEPΔhrcA ΔhrcA;hrcA基因缺失 本研究工作
BLΔUEPΔhrcAΔepr Δepr;epr基因缺失 本研究工作
BLΔUEPΔhrcAΔeprΔbpr Δbpr;bpr基因缺失 本研究工作
BLΔUEPΔhrcAΔeprΔbprΔvpr Δvpr;vpr基因缺失 本研究工作
BLΔUEPΔvpr Δvpr;vpr基因缺失 本研究工作
质粒
pTU Kan marker 本实验室保藏
pTU-ΔhrcA Kan marker 本研究工作
pTU-Δepr Kan marker 本研究工作
pTU-Δbpr Kan marker 本研究工作
pTU-Δvpr Kan marker 本研究工作
表1  研究中使用的菌株和质粒
引物 序列(5'-3') 用途
hrcA-UF CCCTTAACGAATTCCTGCAGCCCGGGATCTTGCAGGTTATCGTCAACGA PCR克隆hrcA框内缺失用上、
hrcA-UR AAGGGATTCCTCCCTTCTGTCACGCCTCTAAGGCGTTCATT 下游同源片段SmaI/XbaI
hrcA-DF ATGAACGCCTTAGAGGCGTGACAGAAGGGAGGAATCCCTTCTT
hrcA-DR TCCACCGCGGTGGCGGCCGCTCTAGAGTACGCTTCATCCTCAACCTGC
epr-UF CCCTTAACGAATTCCTGCAGCCCGGGATCCCTAATGCTGAACCGCTATT 构建敲除载体
epr-UR GGCCTTTGCTGCTGCTTATTGCTTTCCGCTTGA pTU-epr用同源臂SmaI/XbaI
epr-DF AAGCAATAAGCAGCAGCAAAGGCCAAAGTCAA
epr-DR TCCACCGCGGTGGCGGCCGCTCTAGACTTTGTCGGCCATGATCTGAA
bpr-UF CCCTTAACGAATTCCTGCAGCCCGGGTAAGAAACGTGTTTGACCGGGT 构建敲除载体
bpr-UR AGCAAGTGTTATATCAGAATGCCGCTGACCAA pTU-bpr用同源臂SmaI/XbaI
bpr-DF CGGCATTCTGATATAACACTTGCTTTCGCCCGT
bpr-DR TCCACCGCGGTGGCGGCCGCTCTAGAGCGGTATTTCAGCAATGAAGGA
vpr-UF CCCTTAACGAATTCCTGCAGCCCGGGTGAGGATGATGGTATCGACGGT 组成敲除载体
vpr-UR GAAGCAAAGCGAAGCCATTCATACGGAACATTCCT pTU-vpr的同源片段SmaI/XbaI
vpr-DF GTATGAATGGCTTCGCTTTGCTTCGAGCTGTT
vpr-DR TCCACCGCGGTGGCGGCCGCTCTAGACATCGGCAGCCTGATATGTACC
gap-F GTGTCGCTCGTTGACCTTGTGG qRT-PCR,内参基因GAPDH
gap-R CCCATTCATTGTCATACCATGCG
gro-F GCTCGCAACTTCAGCAACAAGC qRT-PCR,靶标基因groEL
gro-R CCCATTCATTGTCATACCATGCG
dnaK-F CAAAGCCGATGAAGCACAGGTG qRT-PCR,靶标基因dnaK
dnaK-R CAGCGTCCACGACATTATCATCG
ap-F CAGAGCTTGAAGTCATGGCTCCTG qRT-PCR,靶标基因aprE
ap-R TTGAGCGGCAGCTTCGACATT
表2  研究中使用的引物
图2  基因敲除菌株的构建 A:基因敲除菌株构建流程 B:基因敲除菌株验证。 M:DNA标尺;WT:对照菌株;MT:基因敲除菌株
图3  hrcA敲除后groEL和dnaK基因转录水平的变化
图4  BLΔUEPΔhrcA的生物量与AprE合成能力分析
图5  删除hrcA对宿主aprE表达水平的影响
图6  胞外蛋白酶缺失对AprE表达的影响 A:胞外蛋白酶缺失对菌体AprE产量与转录水平的影响 B:敲除菌株蛋白质电泳,泳道1~8分别为BLΔUEP、CK、ΔE、ΔB、ΔV、ΔEB、ΔEBV 和 ΔAprE菌株
[1] Okuda M, Sumitomo N, Takimura Y, et al. A new subtilisin family: nucleotide and deduced amino acid sequences of new high-molecular-mass alkaline proteases from Bacillus spp. Extremophiles, 2004, 8(3): 229-235.
doi: 10.1007/s00792-004-0381-8
[2] de Souza P M, de Assis Bittencourt M L, Caprara C C, et al. A biotechnology perspective of fungal proteases. Brazilian Journal of Microbiology, 2015, 46(2): 337-346.
doi: 10.1590/S1517-838246220140359 pmid: 26273247
[3] Verma A, Singh H, Anwar S, et al. Microbial keratinases: industrial enzymes with waste management potential. Critical Reviews in Biotechnology, 2017, 37(4): 476-491.
doi: 10.1080/07388551.2016.1185388 pmid: 27291252
[4] Niu D D, Wang Z X. Development of a pair of bifunctional expression vectors for Escherichia coli and Bacillus licheniformis. Journal of Industrial Microbiology & Biotechnology, 2007, 34(5): 357-362.
[5] Wang J J, Shih J C H. Fermentation production of keratinase from Bacillus licheniformis PWD-1 and a recombinant B. subtilis FDB-29. Journal of Industrial Microbiology and Biotechnology, 1999, 22(6): 608-616.
doi: 10.1038/sj.jim.2900667
[6] 王光强. 枯草芽孢杆菌中Sec分泌途径底物特性及非经典分泌途径的研究. 无锡: 江南大学, 2013.
Wang G Q. Research on the substrate characteirstics of sec pathway and non-classical protein secretion pathway in Bacillus subtilis. Wuxi: Jiangnan University, 2013.
[7] de Keyzer J, van der Does C, Driessen A J M. The bacterial translocase: a dynamic protein channel complex. Cellular and Molecular Life Sciences CMLS, 2003, 60(10): 2034-2052.
doi: 10.1007/s00018-003-3006-y
[8] Yuan G, Wong S L. Isolation and characterization of Bacillus subtilis groE regulatory mutants: evidence for orf39 in the dnaK operon as a repressor gene in regulating the expression of both groE and dnaK. Journal of Bacteriology, 1995, 177(22): 6462-6468.
pmid: 7592421
[9] Sambrook J, Russell D W. Molecular cloning. laboratory manual. 3rd ed. New York: Cold Spring Harbor Laboratory Press, 2001.
[10] 叶棋浓. 现代分子生物学技术及实验技巧. 北京: 化学工业出版社, 2015.
Ye Q N. Current molecular biology techniques and tips. Beijing: Chemical Industry Press, 2015.
[11] Zhou C X, Liu H, Yuan F Y, et al. Development and application of a CRISPR/Cas9 system for Bacillus licheniformis genome editing. International Journal of Biological Macromolecules, 2019, 122: 329-337.
doi: 10.1016/j.ijbiomac.2018.10.170
[12] 国家卫生和计划生育委员会, 国家食品药品监督管理总局. 中华人民共和国国家标准: 食品安全国家标准食品微生物学检验乳酸菌检验 GB 4789.35-2016. 北京: 中国标准出版社, 2017.
National Health and Family Planning Commission of the People’s Republic of China, National Medical Products Administration of the People’s Republic of China. National Standard (Mandatory) of the People’s Republic of China: Food microbiology inspection Lactic acid bacteria inspection. GB 4789.35-2016. Beijing: Standards Press of China, 2017.
[13] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 中华人民共和国推荐性国家标准: 蛋白酶制剂 GB/T 23527-2009. 北京: 中国标准出版社, 2009.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. National Standard (Recommended) of the People’s Republic of China: Proteinase preparations. GB/T 23527-2009. Beijing: Standards Press of China, 2009.
[14] 鲍方名. 巨大芽孢杆菌热休克系统的克隆和操纵子的分析. 南京: 南京师范大学, 2008.
Bao F M. Cloning and operon analysis of heat shock system of Bacillus megaterium. Nanjing: Nanjing Normal University, 2008.
[15] Veith B, Herzberg C, Steckel S, et al. The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. Journal of Molecular Microbiology and Biotechnology, 2004, 7(4): 204-211.
[16] Bashir F, Asgher M, Hussain F, et al. Development and characterization of cross-linked enzyme aggregates of thermotolerant alkaline protease from Bacillus licheniformis. International Journal of Biological Macromolecules, 2018, 113: 944-951.
doi: 10.1016/j.ijbiomac.2018.03.009
[17] Schumann W. Production of recombinant proteins in Bacillus subtilis. Advances in Applied Microbiology, 2007, 62: 137-189.
[18] 张心怡, 沈镇炎, 段绪果, 等. 芽孢杆菌表达系统研究进展. 基因组学与应用生物学, 2020, 39(7): 3110-3118.
Zhang X Y, Shen Z Y, Duan X G, et al. The research progress on Bacillus expression system. Genomics and Applied Biology, 2020, 39(7): 3110-3118.
[19] 陈坤. 2709碱性蛋白酶的高产工程菌株构建及应用性能分析. 天津:天津科技大学. 2018.
Chen K. Construction of the engineering bacteria with high yield of alkaline protease 2709 and its application performance. Tianjin: Tianjin University of Science and Technology, 2018.
[20] Zhou C X, Yang G C, Zhang L, et al. Construction of an alkaline protease overproducer strain based on Bacillus licheniformis 2709 using an integrative approach. International Journal of Biological Macromolecules, 2021, 193: 1449-1456.
doi: 10.1016/j.ijbiomac.2021.10.208
[21] Wu S C, Ye R, Wu X C, et al. Enhanced secretory production of a single-chain antibody fragment from Bacillus subtilis by coproduction of molecular chaperones. Journal of Bacteriology, 1998, 180(11): 2830-2835.
pmid: 9603868
[22] Zhang G Q, Bao P, Zhang Y, et al. Enhancing electro-transformation competency of recalcitrant Bacillus amyloliquefaciens by combining cell-wall weakening and cell-membrane fluidity disturbing. Analytical Biochemistry, 2011, 409(1): 130-137.
doi: 10.1016/j.ab.2010.10.013
[23] Meddeb-Mouelhi F, Dulcey C, Beauregard M. High transformation efficiency of Bacillus subtilis with integrative DNA using glycine betaine as osmoprotectant. Analytical Biochemistry, 2012, 424(2): 127-129.
doi: 10.1016/j.ab.2012.01.032 pmid: 22387342
[24] Wu X C, Lee W, Tran L, et al. Engineering a Bacillus subtilis expression-secretion system with a strain deficient in six extracellular proteases. Journal of Bacteriology, 1991, 173(16): 4952-4958.
doi: 10.1128/jb.173.16.4952-4958.1991 pmid: 1907264
[1] 汪坤, 许志国, 丁健. 地衣芽孢杆菌BF-002高产芽孢的碳源/氮源浓度协同优化控制*[J]. 中国生物工程杂志, 2023, 43(2/3): 75-82.
[2] 许慧, 丁健, 史仲平. 地衣芽孢杆菌BF-002高产芽孢的氮源流加工艺研究*[J]. 中国生物工程杂志, 2022, 42(3): 47-54.
[3] 周惠颖,周翠霞,张婷,王雪雨,张会图,冀颐之,路福平. 强化底物利用酶系表达,提升地衣芽孢杆菌生产碱性蛋白酶性能[J]. 中国生物工程杂志, 2021, 41(2/3): 53-62.
[4] 史超硕,李登科,曹雪,袁航,张钰文,于江悦,路福平,李玉. 两个不同启动子及其组合对碱性蛋白酶AprE异源表达的影响 *[J]. 中国生物工程杂志, 2019, 39(10): 17-23.
[5] 侯兵晓, 刘珊娜, 王斌斌, 朱宏吉, 乔建军. 热休克蛋白调控机制[J]. 中国生物工程杂志, 2016, 36(9): 87-93.
[6] 韩海红, 汪俊卿, 王腾飞, 肖静, 韩登兰, 王瑞明. 一种基于单交换原理的地衣芽孢杆菌基因敲除方法及应用[J]. 中国生物工程杂志, 2016, 36(11): 63-69.
[7] 温赛, 杨建国. 地衣芽孢杆菌原生质体电转化方法的研究[J]. 中国生物工程杂志, 2015, 35(7): 76-82.
[8] 薛正莲, 刘阳, 王洲, 马琦亚, 赵世光, 苏燕南. 基因组改组选育产酯化酶地衣芽孢杆菌[J]. 中国生物工程杂志, 2013, 33(8): 45-50.
[9] 朱蓓霖, 周杰, 汪正华, 赵云, 黄静, 吴自荣. 地衣芽孢杆菌谷氨酰内切酶的克隆表达与性质研究[J]. 中国生物工程杂志, 2013, 33(3): 105-110.
[10] 陈武, 黎定军, 丁彦, 张旭, 肖启明, 周清明. 病原微生物对抗菌肽抗性机制的研究进展[J]. 中国生物工程杂志, 2012, 32(05): 97-106.
[11] 王兰兰, 高超, 张龙. 鲜鹿茸酶降解过程的研究[J]. 中国生物工程杂志, 2011, 31(10): 39-44.
[12] 欧阳藩, 朱谦. 生物技术中工程设备的一些进展[J]. 中国生物工程杂志, 1992, 12(2): 1-7.
[13] 赵云德, 王贤舜. 枯草杆菌碱性蛋白酶蛋白质工程进展[J]. 中国生物工程杂志, 1991, 11(6): 16-19.
[14] 夏麟培, 陈丙瑜. 碱性蛋白酶制粒[J]. 中国生物工程杂志, 1990, 10(2): 28-31.
[15] 张震元. 供洗涤剂用的碱性蛋白酶[J]. 中国生物工程杂志, 1988, 8(1): 67-67.