Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (6): 45-49    DOI: 10.13523/j.cb.2102016
综述     
重组酶介导扩增技术及其在病原微生物快速检测中的应用进展*
马巧妮1,王萌1,**(),朱兴全2,**()
1 中国农业科学院兰州兽医研究所 家畜疫病病原生物学国家重点实验室 甘肃省动物寄生虫病重点实验室 兰州 730046
2 山西农业大学动物医学学院 太谷 030801
Research Advances in Recombinase-aided Amplification Technology and Its Application in Rapid Detection of Pathogenic Microorganisms
MA Qiao-ni1,WANG Meng1,**(),ZHU Xing-quan2,**()
1 State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences,Lanzhou 730046, China
2 College of Veterinary, Shanxi Agricultural University, Taigu 030801, China
 全文: PDF(446 KB)   HTML
摘要:

建立快速的病原学诊断方法对动物疫病的预防和控制、公共卫生安全等方面具有重要意义。重组酶介导扩增法(RAA)是一种新型恒温体外核酸扩增技术,在体外较低温度下就可以实现对DNA或RNA的快速扩增。RAA具有操作简便、快速、准确、节能、便捷等优点。重组酶、单链结合蛋白和DNA聚合酶是该技术的三大核心物质,利用这三种物质可替代传统PCR的热循环解链过程。该技术将会在病原微生物检测方面发挥重要作用。对RAA技术及其在病原检测方面的应用进行了综述,以期为相关领域的研究提供参考。

关键词: 重组酶介导扩增法(RAA)病原微生物诊断检测    
Abstract:

The establishment of rapid diagnostic methods for pathogens is of great significance for the prevention and control of animal epidemics and public health safety in China. Recombinase-aided amplification (RAA) is a novel isothermal amplification technology in which rapid amplification of DNA or RNA can be carried out at low temperatures, and the entire RAA reaction is simple, rapid, accurate, power-saving and convenient. There are three core substances of this technology, including recombinase, single-stranded DNA binding protein and DNA polymerase, which can replace the traditional PCR thermal cycle chain decomposition process. Therefore, the RAA technology will play a more and more important role in the detection of pathogenic microorganisms. The research advances in the detection of pathogens by the RAA technology was reviewed, which may provide reference for further relevant studies.

Key words: Recombinase-aided amplification (RAA)    Pathogenic microorganisms    Diagnosis    Detection
收稿日期: 2021-02-15 出版日期: 2021-07-06
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(32002306);山西省“1331工程”(20211331-13);中国农业科学院科技创新工程(CAAS-ASTIP-2016-LVRI-03)
通讯作者: 王萌,朱兴全     E-mail: wangmeng02@caas.cn;xingquanzhu1@hotmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
马巧妮
王萌
朱兴全

引用本文:

马巧妮,王萌,朱兴全. 重组酶介导扩增技术及其在病原微生物快速检测中的应用进展*[J]. 中国生物工程杂志, 2021, 41(6): 45-49.

MA Qiao-ni,WANG Meng,ZHU Xing-quan. Research Advances in Recombinase-aided Amplification Technology and Its Application in Rapid Detection of Pathogenic Microorganisms. China Biotechnology, 2021, 41(6): 45-49.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2102016        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I6/45

[1] Abedi A S, Hashempour-Baltork F, Alizadeh A M, et al. The prevalence of Brucella spp. in dairy products in the Middle East region: a systematic review and meta-analysis. Acta Tropica, 2020, 202:105241.
doi: 10.1016/j.actatropica.2019.105241
[2] Fisher C R, Streicker D G, Schnell M J. The spread and evolution of rabies virus: conquering new frontiers. Nature Reviews Microbiology, 2018, 16(4):241-255.
doi: 10.1038/nrmicro.2018.11
[3] Elsheikha H M, Marra C M, Zhu X Q. Epidemiology, pathophysiology, diagnosis, and management of cerebral toxoplasmosis. Clinical Microbiology Reviews, 2020, 34(1). DOI: 10.1128/cmr.00115-19.
[4] Lee C Y P, Lin R T P, Renia L, et al. Serological approaches for COVID-19: epidemiologic perspective on surveillance and control. Frontiers in Immunology, 2020, 11:879.
doi: 10.3389/fimmu.2020.00879
[5] Umesha S, Manukumar H M. Advanced molecular diagnostic techniques for detection of food-borne pathogens: Current applications and future challenges. Critical Reviews in Food Science and Nutrition, 2018, 58(1):84-104.
doi: 10.1080/10408398.2015.1126701 pmid: 26745757
[6] Yan L, Zhou J, Zheng Y, et al. Isothermal amplified detection of DNA and RNA. Molecular BioSystems, 2014, 10(5):970-1003.
doi: 10.1039/c3mb70304e
[7] 吕蓓, 程海荣, 严庆丰, 等. 用重组酶介导扩增技术快速扩增核酸. 中国科学: 生命科学, 2010, 40(10):983-988.
Lü B, Cheng H R, Yan Q F, et al. Recombinase-aid amplification: a novel technology of in vitro rapid nucleic acid amplification . Scientia Sinica (Vitae), 2010, 40(10):983-988.
[8] Jaroenram W, Owens L. Recombinase polymerase amplification combined with a lateral flow dipstick for discriminating between infectiousPenaeus stylirostris densovirus and virus-related sequences in shrimp genome. Journal of Virological Methods, 2014, 208:144-151.
doi: 10.1016/j.jviromet.2014.08.006 pmid: 25152528
[9] Dumètre A, Dardé M L. How to detect Toxoplasma gondii oocysts in environmental samples? FEMS Microbiology Reviews, 2003, 27(5):651-661.
doi: 10.1016/S0168-6445(03)00071-8
[10] 王瑞欢, 张益, 向星宇, 等. 3型腺病毒免提取核酸重组酶介导的等温扩增实时荧光检测方法的建立及应用. 中华实验和临床病毒学杂志, 2019, 33(6):653-657.
Wang R H, Zhang Y, Xiang X Y, et al. Development and evaluation of real-time fluorescence recombinase aided amplification assay without extracting nucleic acid for detection of adenovirus type 3. Chinese Journal of Experimental and Clinical Virology, 2019, 33(6):653-657.
[11] 吕蓓, 程海荣, 严庆丰, 等. 体外核酸快速扩增技术的发展和不断创新. 中国生物工程杂志, 2011, 31(3):91-96.
Lv B, Cheng H R, Yan Q F, et al. The development and recent improvements of in vitro nucleic acid amplification technology . China Biotechnology, 2011, 31(3):91-96.
[12] Chen C, Li X N, Li G X, et al. Use of a rapid reverse-transcription recombinase aided amplification assay for respiratory syncytial virus detection. Diagnostic Microbiology and Infectious Disease, 2018, 90(2):90-95.
doi: S0732-8893(17)30316-4 pmid: 29141771
[13] Xiong Y F, Luo Y S, Li H, et al. Rapid visual detection of dengue virus by combining reverse transcription recombinase-aided amplification with lateral-flow dipstick assay. International Journal of Infectious Diseases, 2020, 95:406-412.
doi: 10.1016/j.ijid.2020.03.075
[14] Hille F, Richter H, Wong S P, et al. The biology of CRISPR-cas: backward and forward. Cell, 2018, 172(6):1239-1259.
doi: 10.1016/j.cell.2017.11.032
[15] Gootenberg J S, Abudayyeh O O, Lee J W, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science, 2017, 356(6336):438-442.
doi: 10.1126/science.aam9321
[16] Myhrvold C, Freije C A, Gootenberg J S, et al. Field-deployable viral diagnostics using CRISPR-Cas13. Science, 2018, 360(6387):444-448.
[17] Chen J S, Ma E B, Harrington L B, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 2018, 360(6387):436-439.
doi: 10.1126/science.aar6245
[18] Bai J, Lin H S, Li H J, et al. Cas12a-based on-site and rapid nucleic acid detection of African swine fever. Frontiers in Microbiology, 2019, 10:2830.
doi: 10.3389/fmicb.2019.02830
[19] 葛以跃, 苏璇, 张倩, 等. CRISPR-Cas13a结合重组酶介导的扩增快速检测副溶血性弧菌方法的建立. 现代预防医学, 2019, 46(20):3777-3781.
Ge Y Y, Su X, Zhang Q, et al. Rapid detection of Vibrio parahaemolyticus by CRISPR-Cas13a combined with recombinase aided amplification(RAA) . Modern Preventive Medicine, 2019, 46(20):3777-3781.
[20] Zhang X P, Guo L C, Ma R R, et al. Rapid detection of Salmonella with recombinase aided amplification. Journal of Microbiological Methods, 2017, 139:202-204.
doi: 10.1016/j.mimet.2017.06.011
[21] Shen X X, Qiu F Z, Shen L P, et al. A rapid and sensitive recombinase aided amplification assay to detect hepatitis B virus without DNA extraction. BMC Infectious Diseases, 2019, 19(1):229.
doi: 10.1186/s12879-019-3814-9
[22] 郑伟, 王刚, 杨永耀, 等. 重组酶介导恒温扩增技术检测疟原虫方法的建立? 寄生虫与医学昆虫学报, 2016, 23(1):15-20.
Zheng W, Wang G, Yang Y Y, et al. A recombinase aided amplification assay for Plasmodium . Acta Parasitologica et Medica Entomologica Sinica, 2016, 23(1):15-20.
[23] Duan S X, Li G X, Li X N, et al. A probe directed recombinase amplification assay for detection of MTHFR A1298C polymorphism associated with congenital heart disease. BioTechniques, 2018, 64(5):211-217.
doi: 10.2144/btn-2018-2010
[24] 廖萍, 刘茶珍, 朱佩云, 等. 重组酶介导扩增技术与传统聚合酶链反应技术在甲状腺癌DNA甲基化检测中的应用比较. 中国医药, 2013, 8(6):797-799.
Liao P, Liu C Z, Zhu P Y, et al. Comparison of recombinase-aid amplification and traditional polymerase chain reaction in DNA methylation detection of thyroid cancer. China Medicine, 2013, 8(6):797-799.
[25] Yin Y B, Zhou D G. Organoid and enteroid modeling of Salmonella infection. Frontiers in Cellular and Infection Microbiology, 2018, 8:102.
doi: 10.3389/fcimb.2018.00102
[26] Crump J A, Sj?lund-Karlsson M, Gordon M A, et al. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clinical Microbiology Reviews, 2015, 28(4):901-937.
doi: 10.1128/CMR.00002-15 pmid: 26180063
[27] Chen N S, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet, 2020, 395(10223):507-513.
doi: 10.1016/S0140-6736(20)30211-7
[28] Yin Y D, Wunderink R G. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology (Carlton, Vic), 2018, 23(2):130-137.
[29] Drosten C, Günther S, Preiser W, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. The New England Journal of Medicine, 2003, 348(20):1967-1976.
doi: 10.1056/NEJMoa030747
[30] Zaki A M, van Boheemen S, Bestebroer T M, et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. The New England Journal of Medicine, 2012, 367(19):1814-1820.
doi: 10.1056/NEJMoa1211721 pmid: 23075143
[31] Huang C L, Wang Y M, Li X W, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 2020, 395(10223):497-506.
doi: 10.1016/S0140-6736(20)30183-5
[32] Xue G H, Li S L, Zhang W W, et al. Reverse-transcription recombinase-aided amplification assay for rapid detection of the 2019 novel coronavirus (SARS-CoV-2). Analytical Chemistry, 2020, 92(14):9699-9705.
doi: 10.1021/acs.analchem.0c01032
[33] Demiraslan H, Dinc G, Doganay M. An overwiev of ORF virus infection in humans and animals. Recent Patents on Anti- Infective Drug Discovery, 2017, 12(1):21-30.
[34] Wang Y, Cui Y Q, Yu Z R, et al. Development of a recombinase-aided amplification assay for detection of orf virus. Journal of Virological Methods, 2020, 280:113861.
doi: 10.1016/j.jviromet.2020.113861
[35] Garcia L S. Malaria. Clinics in Laboratory Medicine, 2010, 30(1):93-129.
doi: 10.1016/j.cll.2009.10.001 pmid: 20513543
[36] 赵松, 刘燕红, 叶钰滢, 等. 基于重组酶介导核酸等温扩增反应的曼氏血吸虫基因检测方法的建立. 中国血吸虫病防治杂志, 2020, 32(4):335-339,344.
Zhao S, Liu Y H, Ye Y Y, et al. Establishment of the gene detection method of Schistosoma mansoni based on the recombinase-aided isothermal amplification assay . Chinese Journal of Schistosomiasis Control, 2020, 32(4):335-339,344.
[1] 康可人,袁强,梁飞敏,伍丽贤. 苄非他明人工抗原合成[J]. 中国生物工程杂志, 2021, 41(7): 58-65.
[2] 陈晨,胡劲超,曹姗姗,门冬. 新型冠状病毒抗原快速检测研发现状及展望*[J]. 中国生物工程杂志, 2021, 41(6): 119-128.
[3] 李帅鹏,任和,安展飞,杨艳坤,白仲虎. 血栓调节蛋白化学发光免疫分析检测方法的建立*[J]. 中国生物工程杂志, 2021, 41(4): 30-36.
[4] 张雪洁,汤家宝,李廷栋,葛胜祥. 单分子免疫检测技术研究进展*[J]. 中国生物工程杂志, 2021, 41(4): 47-54.
[5] 连将儒,马伟芳. DNA水凝胶应用于环境样品快速检测的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 107-115.
[6] 时忠林,崔俊生,杨柯,胡安中,李亚楠,刘勇,邓国庆,朱灿灿,朱灵. 基于微流控芯片的核酸等温扩增技术研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 116-128.
[7] 范月蕾,王跃,王恒哲,李丹丹,毛开云. 新型冠状病毒体外诊断技术研发现状与展望 *[J]. 中国生物工程杂志, 2021, 41(2/3): 150-161.
[8] 周紫卉,刘晓娴,黄昊,肖瑞,祁克宗,王升启. 基于纳米信号标签的表面增强拉曼散射在病原菌检测中的应用 *[J]. 中国生物工程杂志, 2021, 41(2/3): 70-77.
[9] 张正燕,陈钰,宋丽杰,苏政权,张海燕. 场效应晶体管生物传感器在生物医学检测中的应用研究进展*[J]. 中国生物工程杂志, 2021, 41(10): 73-88.
[10] 吕一凡,李更东,薛楠,吕国梁,时邵辉,王春生. LbCpf1基因的原核表达、纯化与体外切割检测 *[J]. 中国生物工程杂志, 2020, 40(8): 41-48.
[11] 贾小梅,倪莉,罗洪艳,丁红雷,王豪举. 猪多杀性巴氏杆菌检测技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 49-54.
[12] 黄昭鸿,黄运红,黄艳梅,龙中儿,山珊. 分型检测致泻性大肠埃希氏菌PCR技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(7): 82-90.
[13] 张玲梅,王豪举. 猪链球菌检测技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 84-91.
[14] 孙恒,王婧,曾令高,王建华. 肽核酸在病毒检测与治疗中的应用 *[J]. 中国生物工程杂志, 2020, 40(1-2): 146-153.
[15] 赵萍,杨艳萍. 人冠状病毒感染诊断技术专利态势分析[J]. 中国生物工程杂志, 2020, 40(1-2): 51-56.