Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (6): 4-12    DOI: 10.13523/j.cb.2101026
研究报告     
GTF2H2通过介导AKT信号通路影响肝癌细胞Hep3B的增殖和迁移*
欧阳琴,李艳萌,徐安健,周冬虎,李振坤,黄坚()
首都医科大学附属北京友谊医院科研实验中心 北京市临床医学研究所 北京 100875
GTF2H2 Affects the Proliferation and Migration of Hep3B Hepatocellular Carcinoma Cells by Mediating AKT Signal Pathway
OUYANG Qin,LI Yan-meng,XU An-jian,ZHOU Dong-hu,LI Zhen-kun,HUANG Jian()
Experimental Center, Beijing Friendship Hospital, Beijing Institute of Clinical Medicine, Beijing 100875, China
 全文: PDF(2099 KB)   HTML
摘要:

目的:探讨通用转录因子II H亚基2(GTF2H2)是否影响肝癌细胞Hep3B的增殖和迁移及其潜在的分子机制。方法:通过转染GTF2H2-siRNA构建GTF2H2敲低的Hep3B肝癌细胞模型;实时定量聚合酶链反应(q-RT-PCR)和蛋白质印迹实验检测肝癌细胞Hep3B的GTF2H2敲低效果;细胞计数实验(MTS)检测GTF2H2敲低的肝癌细胞Hep3B的增殖能力;Transwell细胞迁移实验检测GTF2H2敲低的肝癌细胞Hep3B的迁移能力;蛋白质印迹分析实验检测GTF2H2敲低后是否影响肿瘤相关分子信号通路。结果: GTF2H2敲低组的Hep3B细胞的增殖能力较对照组的Hep3B细胞增强,迁移能力亦有增强;蛋白质印迹实验显示GTF2H2敲低后,p-AKT通路蛋白的表达明显升高。结论:GTF2H2可能通过介导AKT分子信号通路,影响肝癌细胞Hep3B的增殖和迁移能力。

关键词: Hep3BGTF2H2p-AKT增殖迁移    
Abstract:

Objective: To investigate whether General transcription factor II subunit 2(GTF2H2) affects the proliferation and migration of Hep3B cells and the underlying molecular mechanism. Methods: The GTF2H2 knockdown Hep3B cell model was constructed by transfecting GTF2H2-siRNA. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the GTF2H2 knockdown effect in Hep3B cells. MTS cell proliferation assay kit was used to detect the proliferation ability of GTF2H2 knockdown Hep3B cells. The migration ability of GTF2H2 knockdown Hep3B cells was evaluated by cell Transwell assay. Western blotting was used to detect whether GTF2H2 knockdown affects tumor associated molecular signaling pathway. Results: The proliferation and migration ability of GTF2H2 knockdown Hep3B cells was stronger than that of the controls. Western blotting showed that the expression of p-AKT pathway protein in GTF2H2 knockdown Hep3B cells was significantly increased. Conclusion: GTF2H2 may affect the proliferation and migration ability of Hep3B cells by the regulation of the AKT molecular signal pathway.

Key words: Hep3B    GTF2H2    p-AKT    Proliferation    Migration
收稿日期: 2021-01-20 出版日期: 2021-07-06
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(81650014)
通讯作者: 黄坚     E-mail: huangj1966@hotmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
欧阳琴
李艳萌
徐安健
周冬虎
李振坤
黄坚

引用本文:

欧阳琴,李艳萌,徐安健,周冬虎,李振坤,黄坚. GTF2H2通过介导AKT信号通路影响肝癌细胞Hep3B的增殖和迁移*[J]. 中国生物工程杂志, 2021, 41(6): 4-12.

OUYANG Qin,LI Yan-meng,XU An-jian,ZHOU Dong-hu,LI Zhen-kun,HUANG Jian. GTF2H2 Affects the Proliferation and Migration of Hep3B Hepatocellular Carcinoma Cells by Mediating AKT Signal Pathway. China Biotechnology, 2021, 41(6): 4-12.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2101026        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I6/4

上游引物 下游引物
GTF2H2-V1 TA-GTCCTCCTCCTGCTAGCT GGGTTTTGCATCCTGGTCAG
GTF2H2-V2 GCAGCCTTACAACTTGCGAT CGCGAACTTCTGCAGACAAT
GTF2H2-V3 ATTGTCTGCAGAAGTTCGCG AGCTAGCAGGAGGAGGACTA
GAPDH GAGTCAACGGATTTGGTCGT GACAAGCTTCCCGTTCTCAG
表1  GTF2H2-V1、GTF2H2-V2、GTF2H2-V3、GAPDH引物序列表
图1  构建GTF2H2敲低的肝癌细胞Hep3B细胞模型
GTF2H2-siRNAs GTF2H2-V1 GTF2H2-V2 GTF2H2-V3
t P t P t P
GTF2H2-siRNA1 13.54 0.005 4 18.56 0.002 9 8.364 0.014 0
GTF2H2-siRNA2 20.76 0.002 3 23.47 0.001 8 5.026 0.037 4
GTF2H2-siRNA3 8.818 0.012 6 10.68 0.008 7 3.839 0.061 7
表2  GTF2H2-siRNAs处理Hep3B细胞后GTF2H2 mRNA表达量的统计值
图2  GTF2H2敲低后促进了Hep3B细胞的增殖能力
0H 24H 48H 72H 96H
t 2.211 16.94 8.495 3.274 2.629
P 0.069 <0.000 1 0.000 1 0.017 0.039 1
表3  不同时间对照组和GTF2H2敲低组Hep3B细胞增殖OD值统计表
图3  敲低GTF2H2后促进了肝癌细胞Hep3B的迁移能力
图4  敲低GTF2H2 后激活了p-AKT通路
[1] Mortezaee K. Human hepatocellular carcinoma: Protection by melatonin. Journal of Cellular Physiology, 2018, 233(10):6486-6508.
doi: 10.1002/jcp.26586 pmid: 29672851
[2] Yang J D, Hainaut P, Gores G J, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nature Reviews Gastroenterology & Hepatology, 2019, 16(10):589-604.
[3] Yang J D, Roberts L R. Epidemiology and management of hepatocellular carcinoma. Infectious Disease Clinics of North America, 2010, 24(4):899-919.
doi: 10.1016/j.idc.2010.07.004
[4] Assfalg R, Lebedev A, Gonzalez O G, et al. TFIIH is an elongation factor of RNA polymerase I. Nucleic Acids Research, 2012, 40(2):650-659.
doi: 10.1093/nar/gkr746 pmid: 21965540
[5] Iben S, Tschochner H, Bier M, et al. TFIIH plays an essential role in RNA polymerase I transcription. Cell, 2002, 109(3):297-306.
doi: 10.1016/S0092-8674(02)00729-8
[6] Jaitovich-Groisman I, Benlimame N, Slagle B L, et al. Transcriptional regulation of the TFIIH transcription repair components XPB and XPD by the hepatitis B virus x protein in liver cells and transgenic liver tissue. Journal of Biological Chemistry, 2001, 276(17):14124-14132.
doi: 10.1074/jbc.M010852200
[7] Zurita M, Merino C. The transcriptional complexity of the TFIIH complex. Trends in Genetics, 2003, 19(10):578-584.
pmid: 14550632
[8] Zhao Z, Chen G Y, Long J, et al. Genomic losses at 5q13.2 and 8p23.1 in dysplastic hepatocytes are common events in hepatitis B virus-related hepatocellular carcinoma. Oncology Letters, 2015, 9(6):2839-2846.
doi: 10.3892/ol.2015.3140
[9] Vara J Á F, Casado E, de Castro J, et al. PI3K/Akt signalling pathway and cancer. Cancer Treatment Reviews, 2004, 30(2):193-204.
doi: 10.1016/j.ctrv.2003.07.007
[10] Nitulescu G, van de Venter M, Nitulescu G, et al. The Akt pathway in oncology therapy and beyond (Review). International Journal of Oncology, 2018, 53(6):2319-2331. DOI: 10.3892/ijo.2018.4597.
doi: 10.3892/ijo.2018.4597 pmid: 30334567
[11] Fan L, Zhu H Y, Tao W W, et al. Euphorbia factor L2 inhibits TGF-β-induced cell growth and migration of hepatocellular carcinoma through AKT/STAT3. Phytomedicine, 2019, 62:152931.
doi: S0944-7113(19)30100-X pmid: 31085375
[12] Liu F F, Yang X T, Geng M Y, et al. Targeting ERK, an Achilles’ Heel of the MAPK pathway, in cancer therapy. Acta Pharmaceutica Sinica B, 2018, 8(4):552-562.
doi: 10.1016/j.apsb.2018.01.008
[13] Cheng X, Yang Y, Fan Z, et al. MKL1 potentiates lung cancer cell migration and invasion by epigenetically activating MMP9 transcription. Oncogene, 2015, 34(44):5570-5581.
doi: 10.1038/onc.2015.14 pmid: 25746000
[14] Li Y J, Wei Z M, Meng Y X, et al. Beta-catenin up-regulates the expression of cyclinD1, c-myc and MMP-7 in human pancreatic cancer: relationships with carcinogenesis and metastasis. World Journal of Gastroenterology, 2005, 11(14):2117-2123.
doi: 10.3748/wjg.v11.i14.2117
[15] Aerts M, Benteyn D, Van Vlierberghe H, et al. Current status and perspectives of immune-based therapies for hepatocellular carcinoma. World Journal of Gastroenterology, 2016, 22(1):253-261.
doi: 10.3748/wjg.v22.i1.253
[16] Zhang X F, Li J, Shen F, et al. Significance of presence of microvascular invasion in specimens obtained after surgical treatment of hepatocellular carcinoma. Journal of Gastroenterology and Hepatology, 2018, 33(2):347-354.
doi: 10.1111/jgh.2018.33.issue-2
[17] Humbert S, van Vuuren H, Lutz Y, et al. p44 and p34 subunits of the BTF2/TFIIH transcription factor have homologies with SSL1, a yeast protein involved in DNA repair. The EMBO Journal, 1994, 13(10):2393-2398.
doi: 10.1002/embj.1994.13.issue-10
[18] Wang X W, Yeh H, Schaeffer L, et al. p53 modulation of TFIIH-associated nucleotide excision repair activity. Nature Genetics, 1995, 10(2):188-195.
doi: 10.1038/ng0695-188
[19] 周冬虎, 李艳萌, 贾思雨, 等. GTF2H2的核苷酸切除修复功能对肝癌细胞增殖和凋亡的影响. 临床和实验医学杂志, 2020, 19(3):225-229.
Zhou D H, Li Y M, Jia S Y, et al. Effects of NER function of GTF2H2 on proliferation and apoptosis of liver cancer cells. Journal of Clinical and Experimental Medicine, 2020, 19(3):225-229.
[20] Chalhoub N, Baker S J. PTEN and the PI3-kinase pathway in cancer. Annual Review of Pathology, 2009, 4:127-150.
doi: 10.1146/annurev.pathol.4.110807.092311 pmid: 18767981
[21] Cantley L C, Neel B G. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(8):4240-4245.
[22] Downward J. PI 3-kinase, Akt and cell survival. Seminars in Cell & Developmental Biology, 2004, 15(2):177-182.
[23] Hager M, Haufe H, Lusuardi L, et al. P-AKT overexpression in primary renal cell carcinomas and their metastases. Clinical & Experimental Metastasis, 2010, 27(8):611-617.
[24] Wang Z W, Qu L, Deng B, et al. STYK1 promotes epithelial-mesenchymal transition and tumor metastasis in human hepatocellular carcinoma through MEK/ERK and PI3K/AKT signaling. Scientific Reports, 2016, 6(1):1-12.
doi: 10.1038/s41598-016-0001-8
[25] Fujimori Y, Inokuchi M, Takagi Y, et al. Prognostic value of RKIP and p-ERK in gastric cancer. Journal of Experimental & Clinical Cancer Research, 2012, 31(1):1-8.
[26] Li S, Lv M, Qiu S, et al. NF-κB p65 promotes ovarian cancer cell proliferation and migration via regulating mortalin. Journal of Cellular and Molecular Medicine, 2019, 23(6):4338-4348.
doi: 10.1111/jcmm.2019.23.issue-6
[27] Lee H, Jeong A J, Ye S K. Highlighted STAT3 as a potential drug target for cancer therapy. BMB Reports, 2019, 52(7):415-423.
doi: 10.5483/BMBRep.2019.52.7.152
[28] Yong H Y, Koh M S, Moon A. The p38 MAPK inhibitors for the treatment of inflammatory diseases and cancer. Expert Opinion on Investigational Drugs, 2009, 18(12):1893-1905.
doi: 10.1517/13543780903321490
[1] 李世荣,陈阳琴,张春盼,齐文杰. RS4651通过上调SMAD7抑制小鼠肝细胞AML12的EMT作用[J]. 中国生物工程杂志, 2021, 41(7): 1-9.
[2] 陶守松,任广明,尹荣华,杨晓明,马文兵,葛志强. 敲低去泛素化酶USP13抑制K562细胞的增殖*[J]. 中国生物工程杂志, 2021, 41(5): 1-7.
[3] 路玉祥,李元,方丹丹,王学博,杨万鹏,楚元奎,杨华. MiR-5047在乳腺癌细胞增殖迁移中的作用及表达调控*[J]. 中国生物工程杂志, 2021, 41(4): 9-17.
[4] 唐敏,万群,孙恃雷,胡静,孙子久,方玉婷,张彦. Hsa-miR-5195-3p对人宫颈癌细胞SiHa增殖、迁移与侵袭的影响 *[J]. 中国生物工程杂志, 2020, 40(4): 17-24.
[5] 杨丹,田海山,李校堃. 成纤维细胞生长因子5的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 117-124.
[6] 辜浩,郭鑫宇,堵晶晶,张锫文,王定国,廖坤,张顺华,朱砺. MiR-186-5p对3T3-L1前脂肪细胞增殖分化的影响研究 *[J]. 中国生物工程杂志, 2020, 40(3): 21-30.
[7] 何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云. 乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*[J]. 中国生物工程杂志, 2020, 40(11): 1-9.
[8] 汪路,杨丽媛,唐雨婷,陶瑶,雷力,敬一佩,蒋雪坷,张伶. 干扰PKM2对人白血病细胞增殖和凋亡的影响及潜在机制 *[J]. 中国生物工程杂志, 2019, 39(3): 13-20.
[9] 段李梅,杨锦潇,刘佳渝,郑永波,吴小候,罗春丽. shPLCε通过YAP抑制前列腺癌细胞的丝氨酸/甘氨酸代谢和增殖 *[J]. 中国生物工程杂志, 2019, 39(11): 1-12.
[10] 万群,刘梦瑶,夏菁,苟理尧,唐敏,孙恃雷,张彦. 长链非编码RNA SNHG3对人乳腺癌细胞MCF-7增殖、迁移与侵袭的影响 *[J]. 中国生物工程杂志, 2019, 39(1): 13-20.
[11] 陈军军,娄颖,张元兴,刘琴,刘晓红. 增殖细胞核抗原蛋白在Spodoptera frugiperda昆虫细胞中的表达及纯化 *[J]. 中国生物工程杂志, 2018, 38(7): 14-20.
[12] 苟理尧,刘梦瑶,夏菁,万群,孙恃雷,唐敏,张彦. 骨形成蛋白9对人膀胱癌BIU-87细胞增殖和迁移的影响[J]. 中国生物工程杂志, 2018, 38(5): 10-16.
[13] 李依蔓,周钦. Herpud1对后肾间充质细胞的作用及其机制的探讨*[J]. 中国生物工程杂志, 2018, 38(3): 9-15.
[14] 杨琼,王灵慧,辜浩,堵晶晶,刘进远,张顺华,朱砺. miR-196a-5p对3T3-L1前脂肪细胞增殖和分化的影响效应 *[J]. 中国生物工程杂志, 2018, 38(11): 9-17.
[15] 冯源, 唐云, 徐蕾, 谭海刚. 海藻多糖通过下调肝癌细胞Hep3B糖酵解途径抑制细胞增殖和迁移[J]. 中国生物工程杂志, 2017, 37(9): 31-40.