Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (6): 27-37    DOI: 10.13523/j.cb.2101011
技术与方法     
酵母杂交系统在CRISPR/Cas9基因编辑系统脱靶率研究中的应用*
毕博,张宇,赵慧()
华南农业大学 广州 510640
Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System
BI Bo,ZHANG Yu,ZHAO Hui()
South China Agricultural University, Guangzhou 510640,China
 全文: PDF(1858 KB)   HTML
摘要:

目的:为提高CRISPR/Cas9(clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9)靶向性奠定基础,同时证明酵母杂交系统在研究CRISPR/Cas9脱靶效应中的应用价值。方法:以实验室前期构建成功的activase基因编辑水稻株为研究对象,先采用T7核酸内切酶Ⅰ法初步预测30株基因编辑水稻株的脱靶率。随后以酵母杂交系统进一步预测脱靶率以及研究sgRNA结构对脱靶率的影响。首先,将activase靶向基因的标准sgRNA(standard sgRNA)和短sgRNA(truncated sgRNA)分别克隆至CRISPR/Cas9系统表达载体pDW3769中,构建对应的重组载体pHZ2和pHZ4,转化至YPH499酵母单倍体形成重组酵母YpHZ2和YpHZ4;其次,根据脱靶位点预测选择7组脱靶序列A、B、C、D、E、F、G以及靶向序列,分别克隆至包含报告基因mCherry的高拷贝载体pDW3133和低拷贝载体pDW3134,构建相应的高拷贝重组载体pHZ5、pHZ7、pHZ9、pHZ11、pHZ13、pHZ15、pHZ17和pHZ19,以及对应的低拷贝重组载体pHZ6、pHZ8、pHZ10、pHZ12、pHZ14、pHZ16、pHZ18和pHZ20,转化至YPH500酵母单倍体,构建重组酵母YpHZ5-20。随后,重组酵母YpHZ2和YpHZ4与重组酵母YpHZ5-20分别杂交,挑取双倍体酵母菌落,在不同的时间段下检测荧光数值,根据荧光值定量预测脱靶率。结果:酵母培养144~192 h时荧光最为显著,脱靶序列sgRNA与靶向基因sgRNA同源性越高,越易造成脱靶,但短sgRNA较标准sgRNA脱靶率低。根据水稻植株的脱靶检测显示脱靶率约20%,基于酵母杂交的检测结果显示脱靶率为20%~28%。结论:酵母细胞进入稳定期时荧光值最为显著,且与载体的拷贝数量成正比。sgRNA序列以及长短结构可影响CRISPR/Cas9的基因靶向性。两种方法的脱靶率预测结果相当,表明酵母杂交系统在评价CRISPR/Cas9系统的脱靶率以及研究脱靶影响因素中具有良好的应用价值。

关键词: 脱靶效应酵母双杂交CRISPR/Cas9系统    
Abstract:

Objective: In order to improve the on-target effect of CRISPR/Cas9(clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9).At the same time, it can prove the application value of the yeast hybridization system in the study of off-target effect. Methods: Based on the activase gene-edited rice strains previously constructed in our laboratory, the T7 endonuclease I assay was firstly used to predict off-target rates in 30 gene-edited rice strains. Subsequently, the yeast hybrid system was further used to investigate the off-target rate. During this period, at first, standard sgRNA and truncated sgRNA of on-target gene were cloned into the CRISPR/Cas9 expression vector pDW3769 to be recombinant vectors pHZ2 and pHZ4, and then those vectors were transfered into YPH499 yeast haploids to be the recombinant yeast YpHZ2 and YpHZ4. Seven off-target sequences A, B, C, D, E, F, G derived from off-target site prediction and on-target sequence were selected and cloned into the high copy vector pDW3133 and the low copy vector pDW3134, both of which contained the reporter genemCherry. The corresponding high copy recombination vectors were pHZ5, pHZ7, pHZ9, pHZ11, pHZ13, pHZ15, pHZ17 and pHZ19 and the corresponding low copy recombination vectors were pHZ6, pHZ8, pHZ10, pHZ12, pHZ14, pHZ16, pHZ18 and pHZ20, and all of them were respectively transformed into YPH500 yeast haploids to be recombinant yeast YpHZ5-20. Subsequently, recombinant yeast YpHZ2 and YpHZ4 individually hybridized with recombinant yeast YpHZ5-20, colonies of diploid yeast were picked and the fluorescence values were examined at various time periods, and at last off-target rate on the basis of fluorescence values was predicted. Results: The significant and stable fluorescence value was at 144-192 h, and off-target sgRNA sequences which have higher homology to the targeted sgRNA became more likely to be edited by CRIPSR/Cas9, too. However, truncated sgRNA can reduce the off-target rates compared with standard sgRNA. The result of off-target detection according to rice plants showed about 20%, and the off-target detection based on yeast hybridization was about 20%-28%. Conclusions: The fluorescence values are most significant and stable during the stationary phase in batch culture of yeast and directly proportional to the copies of the vector, and sgRNA sequences and structure can affect and targeting of CRISPR/Cas9. The prediction results of off-target rate were similar between the two methods so that the yeast hybrid platform can be proved to be a highly useful method in evaluating the off-target rate of the CRISPR/Cas9 system and investigating factors affecting the off-target rate.

Key words: Off-target effect    Yeast two-hybrid    CRISPR/Cas9 system
收稿日期: 2021-01-06 出版日期: 2021-07-06
ZTFLH:  Q812  
基金资助: * 广东省自然科学基金(2017A030313196)
通讯作者: 赵慧     E-mail: totom2008@scau.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
毕博
张宇
赵慧

引用本文:

毕博,张宇,赵慧. 酵母杂交系统在CRISPR/Cas9基因编辑系统脱靶率研究中的应用*[J]. 中国生物工程杂志, 2021, 41(6): 27-37.

BI Bo,ZHANG Yu,ZHAO Hui. Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System. China Biotechnology, 2021, 41(6): 27-37.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2101011        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I6/27

引物名称 引物序列
AEP1722 CTACTATATCTTGTCTGCATTTTCTC
AEP1701 CCATGAATGTCACATGTGAATTAG
AEP1724 AGATCGATAGGTTGCTGATTAAAGTTAG
AEP1658 CATCCGATCCTCCTCAACTCCGATG
AEP976 TGCTCTACTACTGTTCCTGGCTAC
AEP1236 CGCAGGTGTCTGACCGCGACTTTG
表1  引物序列信息
DNA模板 阴性对照
/μL
阳性对照
/μL
实验组
/μL
T7实验
对照/μL
Wt 7 - 3.5 -
plw6/plw10 - - 3.5 -
pDW2683 - 3.5 -
pDJ67 - 3.5 -
10×T7E1 缓冲液 2 2 2 2
ddH2O 10.8 10.8 10.8 10.8
表2  T7E1 DNA样本混合情况
命名 脱靶位点序列 PAM 引物 片段长度 /bp
靶序列 GGGCAAGGAGCACAGCAAGCAGG AGG AEP1722/1701 590
A GCGGAAGGAGCACAGCAAGCAGG AGG AEp2331/2332 1 300
B GCTGGAGGAGCAGAGCAAGCCGG CGG AEp2333/2334 550
C GCTAGAGGAGCCCAGCAAGCCGG CGG AEp2335/2336 850
D GGACGACGAGCAGAGCAAGCGGG GGG AEp2337/2338 1 050
E GCGGAAGGAGGACAGGAAGCTGG TGG AEp2339/2340 600
F GAGCCAGCAGCAGAGCAAGCCGG CGG AEp2341/2342 880
G GCTCACGGCGCACATCAAGCGGG GGG AEp2343/2344 660
表3  脱靶序列详细信息
序列信息 名称
standard gRNA 5'-gatcGGGCAAGGAGCACAGCAAGC-3' Oligo79
5'-aaacGCTTGCTGTGCTCCTTGCCC-3' Oligo80
truncated gRNA 5'-gatcGCAAGGAGCACAGCAAGC-3' Oligo81
5'-aaacGCTTGCTGTGCTCCTTGC-3' Oligo82
表4  sgRNA序列信息表
脱靶
位点
序列
名称
引物序列
A
Oligo83
Oligo84
5'- gatcGCGGAAGGAGCACAGCAAGCAGG-3'
5'- tcgaCCTGCTTGCTGTGCTCCTTCCGC-3'
B
Oligo85
Oligo86
5'- gatcGCTGGAGGAGCAGAGCAAGCCGG-3'
5'- tcgaCCGGCTTGCTCTGCTCCTCCAGC-3'
C
Oligo87
Oligo88
5'- gatcGCTAGAGGAGCCCAGCAAGCCGG-3'
5'- tcgaCCGGCTTGCTGGGCTCCTCTAGC-3'
D Oligo89
Oligo90
5'- gatcGGACGACGAGCAGAGCAAGCGGG-3'
5'- tcgaCCCGCTTGCTCTGCTCGTCGTCC-3'
E Oligo91
Oligo92
5'- gatcGCGGAAGGAGGACAGGAAGCTGG-3'
5'- tcgaCCAGCTTCCTGTCCTCCTTCCGC-3'
F Oligo93
Oligo94
5'- gatcGCTCACGGCGCACATCAAGCGGG-3'
5'- tcgaCCCGCTTGATGTGCGCCGTGAGC-3'
G Oligo95
Oligo96
5'- gatcGAGGGAGGAGGACGGCAAGCGGG-3'
5'- tcgaCCCGCTTGCCGTCCTCCTCCCTC-3'
表5  脱靶序列合成信息
重组质粒 序列 载体
pHZ2 standard gRNA(oligo79+80) pDW3766
pHZ4 truncated gRNA(oligo81+82) pDW3766
pHZ5 Off 1(oligo83+84) pDW3133
pHZ6 Off 1(oligo83+84) pDW3134
pHZ7 Off 2(oligo85+86) pDW3133
pHZ8 Off 2(oligo85+86) pDW3134
pHZ9 Off 3(oligo87+88) pDW3133
pHZ10 Off 3(oligo87+88) pDW3134
pHZ11 Off 4(oligo89+90) pDW3133
pHZ12 Off 4(oligo89+90) pDW3134
pHZ13 Off 5(oligo91+92) pDW3133
pHZ14 Off 5(oligo91+92) pDW3134
pHZ15 Off 6(oligo93+94) pDW3133
pHZ16 Off 6(oligo93+94) pDW3134
pHZ17 Off 7(oligo95+96) pDW3133
pHZ18 Off 7(oligo95+96) pDW3134
pHZ19 On target control(oligo97+98) pDW3133
pHZ20 On target control(oligo97+98) pDW3134
表6  重组质粒编号表
酵母菌株
(YpH500)
杂交株YpHZ2
(YpH499)
杂交株YpHZ4
(YpH499)
YpHZ5 YpHZ2+5 YpHZ4+5
YpHZ6 YpHZ2+6 YpHZ4+6
YpHZ7 YpHZ2+7 YpHZ4+7
YpHZ8 YpHZ2+8 YpHZ4+8
YpHZ9 YpHZ2+9 YpHZ4+9
YpHZ10 YpHZ2+10 YpHZ4+10
YpHZ11 YpHZ2+11 YpHZ4+11
YpHZ12 YpHZ2+12 YpHZ4+12
YpHZ13 YpHZ2+13 YpHZ4+13
YpHZ14 YpHZ2+14 YpHZ4+14
YpHZ15 YpHZ2+15 YpHZ4+15
YpHZ16 YpHZ2+16 YpHZ4+16
YpHZ17 YpHZ2+17 YpHZ4+17
YpHZ18 YpHZ2+18 YpHZ4+18
YpHZ19 YpHZ2+19 YpHZ4+19
YpHZ20 YpHZ2+20 YpHZ4+20
YpDW3134 YpHZ2+3134 YpHZ4+3134
表7  杂交酵母菌株编号
图1  T7E1 分析水稻株的基因编辑情况
图2  植株在脱靶位点 A的T7E1 检测图
图3  重组载体的酶切鉴定
图4  阳性对照YpHZ2+19和YpHZ2+20在120~192 h时间段的荧光图
图5  酵母YpHZ2+5和YpHZ4+5杂交株120~192 h荧光图
图6  YpHZ2/4+7和阴性对照YpHZ2/4+3133杂交株144 h荧光图
图7  YpHZ2 分别与 YpHZ5-20 及 YpDW3134 的杂交荧光数据图
图8  YpHZ2+5和YpHZ4+5的脱靶率对比
[1] 李国玲, 杨善欣, 吴珍芳, 等. 提高CRISPR/Cas9介导的动物基因组精确插入效率研究进展. 遗传, 2020, 42(7):641-656.
Li G L, Yang S X, Wu Z F, et al. Recent developments in enhancing the efficiency of CRISPR/Cas9-mediated knock-in in animals. Hereditas, 2020, 42(7):641-656.
[2] Gaj T, Gersbach C A, Barbas C F III. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 2013, 31(7):397-405.
doi: 10.1016/j.tibtech.2013.04.004
[3] Wah D A, Bitinaite J, Schildkraut I, et al. Structure of FokI has implications for DNA cleavage. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(18):10564-10569.
[4] Chandrasegaran S. Recent advances in the use of ZFN-mediated gene editing for human gene therapy. Cell & Gene Therapy Insights, 2017, 3(1):33-41.
[5] 方锐, 畅飞, 孙照霖, 等. CRISPR/Cas9介导的基因组定点编辑技术. 生物化学与生物物理进展, 2013, 40(8):691-702.
Fang R, Chang F, Sun Z L, et al. New method of genome editing derived from CRISPR/Cas9. Progress in Biochemistry and Biophysics, 2013, 40(8):691-702.
[6] Hatada I, Horii T. Genome editing: a breakthrough in life science and medicine. Endocrine Journal, 2016, 63(2):105-110.
doi: 10.1507/endocrj.EJ15-0716 pmid: 26698412
[7] 肖安, 胡莹莹, 王唯晔, 等. 人工锌指核酸酶介导的基因组定点修饰技术. 遗传, 2011, 33(7):3-21.
Xiao A, Hu Y Y, Wang W Y, et al. Progress in zinc finger nuclease engineering for targeted genome modification. Hereditas, 2011, 33(7):3-21.
[8] 唐宇, 李丽莎, 林峻. TALENs技术的研究进展及其应用前景. 生物工程学报, 2015, 31(7):1024-1038.
Tang Y, Li L S, Lin J. Advances in transcription activator-like effector nucleases. Chinese Journal of Biotechnology, 2015, 31(7):1024-1038.
[9] Xiao A, Hu Y Y, Wang W Y, et al. Progress in zinc finger nuclease engineering for targeted genome modification. Hereditas, 2011, 33(7):665-683.
[10] 周阳, 袁少飞, 蒋廷亚, 等. 基因组靶向修饰技术研究进展. 生物学杂志, 2015, 32(5):70-75.
Zhou Y, Yuan S F, Jiang T Y, et al. Research progress on the targeted genome modification. Journal of Biology, 2015, 32(5):70-75.
[11] Vriend L E M, Prakash R, Chen C C, et al. Distinct genetic control of homologous recombination repair of Cas9-induced double-strand breaks, nicks and paired nicks. Nucleic Acids Research, 2016, 44(11):5204-5217.
doi: 10.1093/nar/gkw179
[12] Islam W. CRISPR-Cas9; an efficient tool for precise plant genome editing. Molecular and Cellular Probes, 2018, 39:47-52.
doi: 10.1016/j.mcp.2018.03.006
[13] Hsu P D, Scott D A, Weinstein J A, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 2013, 31(9):827-832.
doi: 10.1038/nbt.2647
[14] 刘耀, 熊莹喆, 蔡镇泽, 等. 基因编辑技术的发展与挑战. 生物工程学报, 2019, 35(8):1401-1410.
Liu Y, Xiong Y Z, Cai Z Z, et al. Development and challenges of gene editing technology. Chinese Journal of Biotechnology, 2019, 35(8):1401-1410.
[15] Lin Y N, Cradick T J, Brown M T, et al. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Research, 2014, 42(11):7473-7485.
doi: 10.1093/nar/gku402
[16] Singh K, Evens H, Nair N, et al. Efficient in vivo liver-directed gene editing using CRISPR/Cas9. Molecular Therapy, 2018, 26(5):1241-1254.
doi: 10.1016/j.ymthe.2018.02.023
[17] Meng X B, Hu X X, Liu Q, et al. Robust genome editing of CRISPR-Cas9 at NAG PAMs in rice. Science China Life Sciences, 2018, 61(1):122-125.
doi: 10.1007/s11427-017-9247-9
[18] Chen J S, Dagdas Y S, Kleinstiver B P, et al. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature, 2017, 550(7676):407-410.
doi: 10.1038/nature24268
[19] Brazelton V A, Zarecor S, Wright D A, et al. A quick guide to CRISPR sgRNA design tools. GM Crops & Food, 2015, 6(4):266-276.
[20] Schiestl R H, Manivasakam P, Woods R A, et al. Introducing DNA into yeast by transformation. Methods, 1993, 5(2):79-85.
doi: 10.1006/meth.1993.1011
[21] Doench J G, Fusi N, Sullender M, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nature Biotechnology, 2016, 34(2):184-191.
doi: 10.1038/nbt.3437 pmid: 26780180
[22] Ren X J, Yang Z H, Xu J, et al. Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. Cell Reports, 2014, 9(3):1151-1162.
doi: 10.1016/j.celrep.2014.09.044
[1] 郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.
[2] 菅璐,黄映辉,梁天亚,王利敏,马洪涛,张婷,李丹阳,王明连. 利用CRISPR/Cas9技术建立敲除JAK2基因K562细胞系 *[J]. 中国生物工程杂志, 2019, 39(7): 39-47.
[3] 王丹丹, 陈恬, 许亮国. Yeast two-hybrid方法筛选VISA相互作用蛋白[J]. 中国生物工程杂志, 2017, 37(6): 63-69.
[4] 郭芬, 林丕容, 李月琴, 苏宪礼, 王丁丁, 周天鸿. BRPF1及其新型转录本BRPF2与RHOX5蛋白间的相互作用[J]. 中国生物工程杂志, 2012, 32(09): 15-21.
[5] 林颖, 李璞, 单敬轩, 陈晓静, 施慧莉, 霍克克. RIOK3促进了caspase-10对PAK2的酶解激活[J]. 中国生物工程杂志, 2012, 32(08): 1-8.
[6] 唐德平, 毛爱红, 廖世奇, 薛林贵, 张柄林. siRNA脱靶效应类型与规避策略[J]. 中国生物工程杂志, 2012, 32(07): 113-119.
[7] 李尧锋, 张楠阳, 赵永聚. 酵母双杂交中诱饵蛋白载体的构建与鉴定方法[J]. 中国生物工程杂志, 2012, 32(02): 123-127.
[8] 吴丽, 杨成红, 邓思思, 周宇波, 钱旻, 臧奕. 应用酵母双杂交系统筛选AMPK相互作用蛋白[J]. 中国生物工程杂志, 2012, 32(02): 1-7.
[9] 王佳琦 李璞 施慧莉 霍克克. 人SSX2IP与14-3-3η蛋白相互作用的研究[J]. 中国生物工程杂志, 2010, 30(07): 0-0.
[10] 侯成千,梁卫红,王军. 水稻OsMY1和OsRacD基因互作的分子鉴定[J]. 中国生物工程杂志, 2008, 28(7): 63-66.
[11] 信学雷, 陈志慧, 李维琪, 刘云英, 麦迪娜, 张云峰. 用酵母双杂交系统研究载脂蛋白AI(apoAI)和清道夫受体BI(SR-BI)间的相互作用[J]. 中国生物工程杂志, 2005, 25(5): 80-84.
[12] 李斌元, 何淑雅, 王桂良, 马云, 肖卫纯, 李洁, 孙春丽, 闵凌峰, 虞佳, NanbertZhong. Bax Inhibitor-1与Herp的相互作用[J]. 中国生物工程杂志, 2005, 25(11): 21-25.
[13] 马海蓉, 李维琪. 酵母双杂交衍生系统[J]. 中国生物工程杂志, 2003, 23(2): 37-41.