Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (6): 13-22    DOI: 10.13523/j.cb.2103030
研究报告     
耻垢分枝杆菌ClpC和ClpX敲低表达菌株的构建及表型分析*
白嘉诚1,迟明哲1,胡亚文1,郝梦2,张雪莲1,**()
1 复旦大学生命科学学院 遗传工程国家重点实验室 上海 200433
2 宁夏回族自治区第四人民医院 银川 750021
Construction and Biological Characteristics of ClpC and ClpX Knock-down Strains in Mycobacterium smegmatis
BAI Jia-cheng1,CHI Ming-zhe1,HU Ya-wen1,HAO Meng2,ZHANG Xue-lian1,**()
1 State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, China
2 The Fourth Hospital of Ningxia Hui Autonomous Region, Yinchuan 750021, China
 全文: PDF(1345 KB)   HTML
摘要:

蛋白质平衡稳定对细菌的生长繁殖以及应对宿主免疫压力十分重要。Clp蛋白酶复合体在结核分枝杆菌的蛋白质降解和平衡稳定中发挥重要作用。Clp蛋白酶中负责识别底物蛋白并将其解折叠的蛋白质有两种:ClpC和ClpX。为初步探究分枝杆菌中ClpC和ClpX各自的功能特点,运用CRISPRi的方法成功构建了耻垢分枝杆菌的ClpC和ClpX诱导型敲低表达菌株,并对其生长相关表型进行分析。结果显示:与野生菌株相比,ClpC和ClpX的低表达均能严重影响耻垢分枝杆菌的生长。ClpC低表达可导致菌株丧失生物膜的形成能力,而ClpX低表达则导致菌株无法维持正常细胞形态,电镜显示细胞壁不完整且细胞呈丝状化,提示ClpC和ClpX可能在分枝杆菌中具有不同的生理功能。可为后期深入开展ClpC和ClpX对分枝杆菌生理调控功能研究及新型抗结核药物筛选提供基础。

关键词: 耻垢分枝杆菌ClpCClpX    
Abstract:

Protein homeostasis through protein quality control is critical for bacterial growth and adaptation to host immune stress. The Clp protease plays an important role in protein degradation and homeostasis in Mycobacterium tuberculosis. There are two proteins in the Clp protease that are responsible for recognizing unfolding substrate proteins:ClpC and ClpX. Then unfoled substract is transferred into the chamber of ClpP, where proteolysis is carried out by protease. In order to explore the respective functional characteristics of ClpC and ClpX in mycobacterium,Mycobacterium smegmatis was selected as the experimental strain, and knockdown strains of ClpC and ClpX were constructed successfully by the CRISPRi method. The results showed that the ClpC and ClpX knockdown strains showed significant growth phenotypes differences compared with wild Mycobacterium smegmatis. Low expression of both ClpC and ClpX severely affected the growth of Mycobacterium smegmatis. ClpC low expression resulted in the loss of biofilm formation ability of the strain, while that of ClpX caused incomplete cell wall and bacterial filamentation indicating that ClpC and ClpX may have different physiological functions in mycobacterium.

Key words: Mycobacterium smegmatis    ClpC    ClpX
收稿日期: 2021-03-15 出版日期: 2021-07-06
ZTFLH:  Q93  
基金资助: * 国家自然科学基金(81971898);国家重点研发计划(2016YFA0500601);新疆建设兵团重点科技攻关项目(2020AB015)
通讯作者: 张雪莲     E-mail: xuelianzhang@fudan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
白嘉诚
迟明哲
胡亚文
郝梦
张雪莲

引用本文:

白嘉诚,迟明哲,胡亚文,郝梦,张雪莲. 耻垢分枝杆菌ClpC和ClpX敲低表达菌株的构建及表型分析*[J]. 中国生物工程杂志, 2021, 41(6): 13-22.

BAI Jia-cheng,CHI Ming-zhe,HU Ya-wen,HAO Meng,ZHANG Xue-lian. Construction and Biological Characteristics of ClpC and ClpX Knock-down Strains in Mycobacterium smegmatis. China Biotechnology, 2021, 41(6): 13-22.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2103030        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I6/13

Name Sequence(5'-3') Use
Sg-clpC-F GGGAGAGCGCGTCGTCGTCGCCGAA the forward sgRNA for clpC knock down
Sg-clpC-R AAACTTCGGCGACGACGACGCGCTC the reverse sgRNA for clpC knock down
Sg-clpX-F GGGAGACCTGCTTTTGGCTCTTCCCA the forward sgRNA for clpX knock down
Sg-clpX-R AAACTGGGAAGAGCCAAAAGCAGGTC the reverse sgRNA for clpX knock down
PLJR962-F TTCCTGTGAAGAGCCATTGATAATG the primer for recombinant PLJR962 plasmid sequence
q-sigA-F CGTCCGGCGACTTCGTGT the forward primer for sigA qPCR
q-sigA-R TGGCCAGCTCCACCTCTTCT the reverse primer for sigA qPCR
q-clpC-F GAAGGCCCACCAGGAGATCT the forward primer for clpC qPCR
q-clpC-R TCGAGATGTCGGACGTGCCGA the reverse primer for clpC qPCR
q-clpX-F GGACTCCGCCAAGCGGAC the forward primer for clpX qPCR
q-clpX-R TCTGCGCCAGGTAGGTCTTG the reverse primer for clpX qPCR
表1  本研究使用的引物
ClpX ClpC ClpA ClpP HslUV Lon
M.tb clpX clpC1 clpC2 clpP1 clpP2
M.sm clpX clpC clpP1 clpP2 Lon
M.m clpX clpC1 clpC2 clpP1 clpP2 Lon
E.coli clpX clpA clpP HslUV Lon
表2  不同细菌间主要蛋白酶降解系统分析
图1  重组pLJR962质粒构建及DNA测序图谱
图2  耻垢分枝杆菌ClpC和ClpX敲低表达菌株转录水平验证
图3  耻垢分枝杆菌ClpC和ClpX敲低表达菌株固体平板生长点板
图4  耻垢分枝杆菌ClpC和ClpX敲低表达菌株生长曲线
图5  耻垢分枝杆菌ClpC和ClpX敲低表达菌株菌落形态
图6  耻垢分枝杆菌ClpC和ClpX敲低表达菌株生物膜
图7  耻垢分枝杆菌ClpC和ClpX敲低表达菌株细胞形态
[1] World Health Organization. Global tuberculosis report 2020. World Health Organization, 2020. [2021-04-10].https://apps.who.int/iris/bitstream/handle/10665/336069/9789240013131-eng.pdf.
[2] Gur E, Biran D, Ron E Z. Regulated proteolysis in Gram-negative bacteria - how and when? Nature Reviews Microbiology, 2011, 9(12):839-848.
doi: 10.1038/nrmicro2669
[3] Olivares A O, Baker T A, Sauer R T. Mechanistic insights into bacterial AAA plus proteases and protein-remodelling machines. Nature Reviews Microbiology, 2016, 14(1):33-44.
[4] Gottesman S. Proteases and their targets in Escherichia coli. Annual Review of Genetics, 1996, 30:465-506.
doi: 10.1146/annurev.genet.30.1.465
[5] Martin A, Baker T A, Sauer R T. Rebuilt AAA + motors reveal operating principles for ATP-fuelled machines. Nature, 2005, 437(7062):1115-1120.
doi: 10.1038/nature04031
[6] Akopian T, Kandror O, Raju R M, et al. The active ClpP protease from M. tuberculosis is a complex composed of a heptameric ClpP1 and a ClpP2 ring. The EMBO Journal, 2012, 31(6):1529-1541.
doi: 10.1038/emboj.2012.5 pmid: 22286948
[7] Neuwald A F, Aravind L, Spouge J L, et al. AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Research, 1999, 9(1):27-43.
[8] Ribeiro-Guimarães M L, Pessolani M C V. Comparative genomics of mycobacterial proteases. Microbial Pathogenesis, 2007, 43(5-6):173-178.
doi: 10.1016/j.micpath.2007.05.010
[9] Griffin J E, Gawronski J D, Dejesus M A, et al. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathogens, 2011, 7(9):e1002251. DOI: 10.1371/journal.ppat.1002251.
doi: 10.1371/journal.ppat.1002251
[10] Sassetti C M, Boyd D H, Rubin E J. Genes required for mycobacterial growth defined by high density mutagenesis. Molecular Microbiology, 2003, 48(1):77-84.
doi: 10.1046/j.1365-2958.2003.03425.x
[11] Sassetti C M, Rubin E J. Genetic requirements for mycobacterial survival during infection. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(22):12989-12994.
[12] Schmitt E K, Riwanto M, Sambandamurthy V, et al. The natural product cyclomarin killsMycobacterium tuberculosis by targeting the ClpC1 subunit of the caseinolytic protease. Angewandte Chemie (International Ed in English), 2011, 50(26):5889-5891.
doi: 10.1002/anie.v50.26
[13] Gao W, Kim J Y, Anderson J R, et al. The cyclic peptide ecumicin targeting ClpC1 is active against Mycobacterium tuberculosis in vivo. Antimicrobial Agents and Chemotherapy, 2015, 59(2):880-889.
doi: 10.1128/AAC.04054-14
[14] Gavrish E, Sit C S, Cao S G, et al. Lassomycin, a ribosomally synthesized cyclic peptide, kills Mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2. Chemistry & Biology, 2014, 21(4):509-518.
doi: 10.1016/j.chembiol.2014.01.014
[15] Rock J M, Hopkins F F, Chavez A, et al. Programmable transcriptional repression in Mycobacteria using an orthogonal CRISPR interference platform. Nature Microbiology, 2017, 2:16274.
doi: 10.1038/nmicrobiol.2016.274
[16] Knipfer N, Seth A, Roudiak S G, et al. Species variation in ATP-dependent protein degradation: protease profiles differ between Mycobacteria and protease functions differ between Mycobacterium smegmatis and Escherichia coli. Gene, 1999, 231(1-2):95-104.
pmid: 10231573
[17] Benaroudj N, Raynal B, Miot M, et al. Assembly and proteolytic processing of mycobacterial ClpP1 and ClpP2. BMC Biochemistry, 2011, 12:61.
doi: 10.1186/1471-2091-12-61 pmid: 22132756
[18] Schmitz K R, Sauer R T. Substrate delivery by the AAA+ ClpX and ClpC1 unfoldases activates the mycobacterial ClpP1P2 peptidase. Molecular Microbiology, 2014, 93(4):617-628.
doi: 10.1111/mmi.12694 pmid: 24976069
[19] Frees D, Savijoki K, Varmanen P, et al. Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria. Molecular Microbiology, 2007, 63(5):1285-1295.
doi: 10.1111/mmi.2007.63.issue-5
[20] Gur E, Ottofueling R, Dougan D A. Machines of destruction - AAA+ Proteases and the adaptors that control them. Regulated Proteolysis in Microorganisms, 2013, 66:3-33. DOI: 10.1007/978-94-007-5940-4_1.
[21] Frees D, Gerth U, Ingmer H. Clp chaperones and proteases are central in stress survival, virulence and antibiotic resistance of Staphylococcus aureus. International Journal of Medical Microbiology, 2014, 304(2):142-149.
doi: 10.1016/j.ijmm.2013.11.009
[22] Raju R M, Unnikrishnan M, Rubin D H F, et al. Mycobacterium tuberculosis ClpP1 and ClpP2 function together in protein degradation and are required for viability in vitro and during infection. PLoS Pathogens, 2012, 8(2):e1002511.
doi: 10.1371/journal.ppat.1002511
[23] DeJesus M A, Gerrick E R, Xu W Z, et al. Comprehensive essentiality analysis of the Mycobacterium tuberculosis genome via saturating transposon mutagenesis. mBio, 2017, 8(1):e02133-e02116.
[24] Kansal R G, Gomez-Flores R, Mehta R T. Change in colony morphology influences the virulence as well as the biochemical properties of the Mycobacterium avium complex. Microbial Pathogenesis, 1998, 25(4):203-214.
doi: 10.1006/mpat.1998.0227
[25] Yamazaki Y, Danelishvili L, Wu M, et al. The ability to form biofilm influences Mycobacterium avium invasion and translocation of bronchial epithelial cells. Cellular Microbiology, 2006, 8(5):806-814.
doi: 10.1111/cmi.2006.8.issue-5
[26] Aldridge B B, Fernandez-Suarez M, Heller D, et al. Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility. Science, 2012, 335(6064):100-104.
doi: 10.1126/science.1216166
[27] Camberg J L, Hoskins J R, Wickner S. ClpXP protease degrades the cytoskeletal protein, FtsZ, and modulates FtsZ polymer dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(26):10614-10619.
[28] Sass P, Josten M, Famulla K, et al. Antibiotic acyldepsipeptides activate ClpP peptidase to degrade the cell division protein FtsZ. PNAS, 2011, 108(42):17474-17479.
doi: 10.1073/pnas.1110385108
[29] Silber N, Pan S, Schäkermann S, et al. Cell division protein FtsZ is unfolded for N-terminal degradation by antibiotic-activated ClpP. mBio, 2020, 11(3):e01006-01020. DOI: 10.1128/mbio.01006-20.
[30] Gopal P, Sarathy J P, Yee M, et al. Pyrazinamide triggers degradation of its target aspartate decarboxylase. Nature Communications, 2020, 11(1):1661.
doi: 10.1038/s41467-020-15516-1
[1] 何子纯, 李升锦. 结核杆菌eis基因的克隆及其在耻垢分枝杆菌中的表达[J]. 中国生物工程杂志, 2010, 30(12): 20-24.
[2] 周爱萍 陈艳炯 李薇 张旭燕 徐纪茹. 结核杆菌DnaA蛋白在耻垢分枝杆菌中的同源表达[J]. 中国生物工程杂志, 2010, 30(08): 72-75.