Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (2/3): 98-106    DOI: 10.13523/j.cb.2011013
综述     
经皮给药纳米载体及靶向系统治疗类风湿关节炎研究进展 *
胡胜涛1,张二兵1,林也1,张逢1,黄丹1,宋厚盼1,刘斌2,蔡雄1,**()
1 湖南中医药大学中药粉体与创新药物省部共建国家重点实验室(培育基地) 长沙 410208
2 湖南大学生物学院 长沙 410082
Research Advances on the Therapy of Rheumatoid Arthritis with the Nanotechnology Based on Transdermal Drug Delivery System
HU Sheng-tao1,ZHANG Er-bing1,LIN Ye1,ZHANG Feng1,HUANG Dan1,SONG Hou-pan1,LIU Bin2,CAI Xiong1,**()
1 Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
2 College of Biology, Hunan University, Changsha 410082, China
 全文: PDF(16696 KB)   HTML
摘要:

类风湿关节炎(RA)是全世界难治性自身免疫疾病,其治疗药物虽不断发展,但病灶药物浓度达不到有效水平导致药物疗效不理想或存在各种毒副反应,因此,基于新技术、新方法研究开发针对RA的安全、高效新型制剂是必要的。研究表明,纳米技术的运用可提高药物生物利用度,经皮给药可改善口服和注射带来的毒副作用。对近年来基于经皮给药系统治疗RA利用的纳米载体进行综述,并阐述在RA病理特征中运用到的靶向策略,思考透皮制剂的改进方法,探讨新型纳米制剂研究现状及存在的问题,从而为制备新型透皮纳米制剂提供参考。

关键词: 类风湿关节炎纳米载体透皮给药靶向    
Abstract:

Rheumatoid arthritis (RA) is a systemic, chronic autoimmune disease that is considered to be incurable. Less effective concentration of conventional drugs in the affected joints and more frequent adverse effects of even novel biological agents remain to be therapeutic challengs for RA. Advances in nanobiotechnology have facilitated the development of new classes of therapeutics with a focus on new drug delivery systems. Recent studies have shown that nanocarriers can significantly improve bioavailability of existing, traditional disease-modifying antirheumatic drugs (DMARS), and transdermal delivery can remarkably decrease toxic effects and adverse reaction of oral administration and injection of drugs. Here, nanomaterials used in the transdermal drug delivery system for RA therapy and target therapeutic strategies in the basic-research aspect of RA as well as the progress and existing issues of current nano-preparations are summarized so as to provide perspectives for further avenues of development and improved method of novel transdermal nanomaterial-loaded drug delivery systems.

Key words: Rheumatoid arthritis    Nanocarrier    Transdermal drug delivery    Target therapy
收稿日期: 2020-11-05 出版日期: 2021-04-08
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(81703920);湖南省“芙蓉学者奖励计划”(湘教通〔2020〕58号);湖南省自然科学基金面上项目(2018JJ2293);湖南省高校创新平台开放基金(17K069);湖南省121创新人才培养工程(湘人社函〔2019〕192号);湖南省“刘良院士专家工作站”资助项目(湘科协通〔2020〕34 号)
通讯作者: 蔡雄     E-mail: caixiong@hnucm.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
胡胜涛
张二兵
林也
张逢
黄丹
宋厚盼
刘斌
蔡雄

引用本文:

胡胜涛,张二兵,林也,张逢,黄丹,宋厚盼,刘斌,蔡雄. 经皮给药纳米载体及靶向系统治疗类风湿关节炎研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 98-106.

HU Sheng-tao,ZHANG Er-bing,LIN Ye,ZHANG Feng,HUANG Dan,SONG Hou-pan,LIU Bin,CAI Xiong. Research Advances on the Therapy of Rheumatoid Arthritis with the Nanotechnology Based on Transdermal Drug Delivery System. China Biotechnology, 2021, 41(2/3): 98-106.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2011013        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I2/3/98

图1  纳米载体示意图
图2  RA病变关节及血管翳内环境
图3  ELVIS效应机理图示
图4  白细胞与内皮细胞间黏附
[1] Smolen J S, Aletaha D, Barton A, et al. Rheumatoid arthritis. Nature Reviews Disease Primers, 2018,4(Suppl 10):60-75.
[2] Li Z G. A new look at rheumatology in China:Opportunities and challenges. Nature Reviews Rheumatology, 2015,11(5):313-317.
pmid: 25599919
[3] 谢文慧, 张卓莉. 类风湿关节炎治疗目标的研究进展. 中华风湿病学杂志, 2019,23(3):195-198.
Xie W H, Zhang Z L. Research progress on the therapeutic goals of rheumatoid arthritis. Chinese Journal of Rheumatology, 2019,23(3):195-198.
[4] Burmester G R, Pope J E. Novel treatment strategies in rheumatoid arthritis. The Lancet, 2017,389(10086):2338-2348.
[5] Oliveira I M, Gon?alves C, Reis R L, et al. Engineering nanoparticles for targeting rheumatoid arthritis: Past, present, and future trends. Nano Research, 2018. 11(9):4489-4506.
[6] 庞晓晨, 成睿珍, 赵静, 等. 中药透皮给药系统研究进展及其新剂型的应用. 中国新药杂志, 2019,28(3):286-291.
Pang X C, Cheng R Z, Zhao J, et al. Research progress of transdermal drug delivery system of traditional Chinese medicine and the application of new formulations. Chinese Journal of New Drugs, 2019,28(3):286-291.
[7] Pirmardvand Chegini S, Varshosaz J, Taymouri S. Recent approaches for targeted drug delivery in rheumatoid arthritis diagnosis and treatment. Artificial Cells, Nanomedicine,and Biotechnology, 2018,46(sup2):502-514.
[8] 邢桂英, 邵林军. 纳米载体在中药制剂经皮给药应用中的研究进展. 华西药学杂志, 2020,35(1):101-105.
Xing G Y, Shao L J. Recent advance of nanocarriers in transdermal drug delivery of traditional Chinese medicine. West China Journal of Pharmaceutical Sciences, 2020,35(1):101-105.
[9] Wen Y, Lin W, Mettenbrink E M, et al. Nanoparticle toxicology. Annu Rev Pharmacol Toxicol, 2021,61(1):269-289.
[10] Khan D, Qindeel M, Ahmed N, et al. Development of novel pH-sensitive nanoparticle-based transdermal patch for management of rheumatoid arthritis. Nanomedicine(London, England), 2020,15(6):603-624.
[11] Gul R, Ahmed N, Ullah N, et al. Biodegradable ingredient-based emulgel loaded with ketoprofen nanoparticles. AAPS Pharm Sci Tech, 2018,19(4):1869-1881.
[12] El Menshawe S F, Nafady M M, Aboud H M, et al. Transdermal delivery of fluvastatin sodium via tailored spanlastic nanovesicles: mitigated Freund’s adjuvant-induced rheumatoid arthritis in rats through suppressing p38 MAPK signaling pathway. Drug Delivery, 2019,26(1):1140-1154.
[13] Fernández-García R, Lalatsa A, Statts L, et al. Transferosomes as nanocarriers for drugs across the skin: Quality by design from lab to industrial scale. Int J Pharm, 2020,573:118817.
doi: 10.1016/j.ijpharm.2019.118817 pmid: 31678520
[14] Marimuthu M, Bennet D, Kim S. Self-assembled nanoparticles of PLGA-conjugated glucosamine as a sustained transdermal drug delivery vehicle. Polymer Journal, 2013,45(2):202-209.
[15] Zhang Z, Chen Y, Ding J, et al. Biocompatible 5-aminolevulinic acid/Au nanoparticle-loaded ethosomal vesicles for in vitro transdermal synergistic photodynamic/photothermal therapy of hypertrophic scars. Nanoscale Research Letters, 2017,12(1):622.
pmid: 29247361
[16] Tang Q, Chen C, Jiang Y, et al. Engineering an adhesive based on photosensitive polymer hydrogels and silver nanoparticles for wound healing. Journal of Materials Chemistry B, 2020,8(26):5756-5764.
pmid: 32519734
[17] Janakiraman K, Krishnaswami V, Rajendran V, et al. Novel Nano therapeutic materials for the effective treatment of rheumatoid arthritis- recent insights. Materials Today Communications, 2018,17:200-213.
doi: 10.1016/j.mtcomm.2018.09.011 pmid: 32289062
[18] Wen Z, Lin J, Su J Q, et al. Influences of trehalose-modification of solid lipid nanoparticles on drug loading. European Journal of Lipid Science and Technology, 2017,119(9):1600364(1-10).
[19] Nirbhavane P, Sharma G, Singh B, et al. Preclinical explorative assessment of celecoxib-based biocompatible lipidic nanocarriers for the management of CFA-induced rheumatoid arthritis in Wistar rats. AAPS Pharm SciTech, 2018,19(7):3187-3198.
[20] Peng L H, Wei W, Shan Y H, et al. Sustained release of piroxicam from solid lipid nanoparticle as an effective anti-inflammatory therapeutics in vivo. Drug Development and Industrial Pharmacy, 2017,43(1):55-66.
pmid: 27498809
[21] Bhalekar M R, Madgulkar A R, Desale P S, et al. Formulation of piperine solid lipid nanoparticles (SLN) for treatment of rheumatoid arthritis. Drug Development and Industrial Pharmacy, 2017,43(6)1003-1010.
doi: 10.1080/03639045.2017.1291666 pmid: 28161984
[22] Kaur A, Goindi S, Katare O P. Formulation, characterisation and in vivo evaluation of lipid-based nanocarrier for topical delivery of diflunisal. Journal of Microencapsulation, 2016,33(5):475-486.
[23] Singh B, Singh R, Bandyopadhyay S, et al. Optimized nanoemulsifying systems with enhanced bioavailability of carvedilol. Colloids and Surfaces B: Biointerfaces, 2013,101:465-474.
pmid: 23010056
[24] 陈雯烨, 王志高, 鞠兴荣, 等. 纳米乳的研究进展与潜在局限性. 粮食科技与经济, 2020,45(3):79-83.
Chen W Y, Wang Z G, Ju X R, et al. Research progress and potential limitations of nanoemulsions. Grain Science and Technology and Economy, 2020,45(3):79-83.
[25] Pathan I, Mangle M, Bairagi S. Design and characterization of nanoemulsion for transdermal delivery of meloxicam. Analytical Chemistry Letters, 2016,6(3):286-295.
[26] Gokhale J P, Mahajan H S, Surana S J. Quercetin loaded nanoemulsion-based gel for rheumatoid arthritis: In vivo and in vitro studies. Biomedicine & Pharmacotherapy, 2019,112:108622.
[27] Chen Y, Zhu D P, Xiong X P, et al. Magnesium oil enriched transdermal nanogel of methotrexate for improved arthritic joint mobility, repair, and reduced inflammation. Journal of Microencapsulation, 2020,37(1):77-90.
pmid: 31795796
[28] Shewaiter M A, Hammady T M, El-Gindy A, et al. Formulation and characterization of leflunomide/diclofenac sodium microemulsion base-gel for the transdermal treatment of inflammatory joint diseases. Journal of Drug Delivery Science and Technology, 2021,61:102110.
[29] Poonia N, Lather V, Kaur B, et al. Optimization and development of methotrexate and resveratrol-loaded nanoemulsion formulation using box-behnken design for rheumatoid arthritis. ASSAY and Drug Development Technologies, 2020,18(8):356-368.
pmid: 33052698
[30] Khosa A, Reddi S, Saha R N. Nanostructured lipid carriers for site-specific drug delivery. Biomedicine Pharmacother, 2018,103:598-613.
[31] Gu Y W, Tang X M, Yang M, et al. Transdermal drug delivery of triptolide-loaded nanostructured lipid carriers: Preparation, pharmacokinetic, and evaluation for rheumatoid arthritis. International Journal of Pharmaceutics, 2019,554:235-244.
pmid: 30423415
[32] Sadarani B, Majumdar A, Paradkar S, et al. Enhanced skin permeation of methotrexate from penetration enhancer containing vesicles: In vitro optimization and in vivo evaluation. Biomedicine & Pharmacotherapy, 2019,114:108770.
pmid: 30913494
[33] Yurdasiper A, Ertan G, Heard C M. Enhanced delivery of naproxen to the viable epidermis from an activated poly N-isopropylacrylamide (PNIPAM) nanogel: Skin penetration, modulation of COX-2 expression and rat paw oedema. Nanomedicine: Nanotechnology,Biology and Medicine, 2018,14(7):2051-2059.
[34] Qindeel M, Khan D, Ahmed N, et al. Surfactant-free, self-assembled nanomicelles-based transdermal hydrogel for safe and targeted delivery of methotrexate against rheumatoid arthritis. ACS Nano, 2020,14(4):4662-4681.
doi: 10.1021/acsnano.0c00364 pmid: 32207921
[35] Filipowicz A, Wo?owiec S. Solubility and in vitro transdermal diffusion of riboflavin assisted by PAMAM dendrimers. International Journal of Pharmaceutics, 2011,408(1-2):152-156.
[36] 谭玉静, 洪枫, 邵志宇. 细菌纤维素在生物医学材料中的应用. 中国生物工程杂志, 2007,27(4):126-131.
Tan Y J, Hong F, Shao Z Y. The application of bacterial cellulose in biomedical materials. China Biotechnology, 2007,27(4):126-131.
[37] Maimoona Q, Dildar K, Naveed A, et al. Surfactant free, self-assembled nanomicelles-based transdermal hydrogel for safe and targeted delivery of methotrexate against rheumatoid arthritis. ACS Nano, 2020,14(4):4662-4681.
[38] 夏加璇, 朱颖, 任宏伟, 等. 纳米制剂在类风湿性关节炎靶向治疗中的应用研究. 中国医药工业杂志, 2019,50(7):712-721.
Xia J X, Zhu Y, Ren H W, et al. Researches on nanomedicines in targeted therapy of rheumatoid arthritis. Chinese Journal of Pharmaceuticals, 2019,50(7):712-721.
[39] Wang Y L, Liu Z B, Li T, et al. Enhanced therapeutic effect of RGD-modified polymeric micelles loaded with low-dose methotrexate and nimesulide on rheumatoid arthritis. Theranostics, 2019,9(3):708-720.
pmid: 30809303
[40] Zhang N, Zhang S S, Xu C Y, et al. Decoy oligodeoxynucleotides, polysaccharides, and targeted peptide-functionalized gold nanorods for the combined treatment of rheumatoid arthritis. Advanced Healthcare Materials, 2018,7(23):e1800982.
[41] Wu Z Q, Xu K N, Min J K, et al. Folate-conjugated hydrophobicity modified glycol chitosan nanoparticles for targeted delivery of methotrexate in rheumatoid arthritis. Journal of Applied Biomaterials & Functional Materials, 2020,18:2280800020962629.
[42] Yang M D, Ding J X, Feng X R, et al. Scavenger receptor-mediated targeted treatment of collagen-induced arthritis by dextran sulfate-methotrexate prodrug. Theranostics, 2017,7(1):97-105.
[43] Trujillo-Nolasco R M, Morales-Avila E, Ocampo-García B E, et al. Preparation and in vitro evaluation of radiolabeled HA-PLGA nanoparticles as novel MTX delivery system for local treatment of rheumatoid arthritis. Materials Science and Engineering: C, 2019,103:109766.
[44] Juarranz Y, Gutiérrez-Ca?as I, Santiago B, et al. Differential expression of vasoactive intestinal peptide and its functional receptors in human osteoarthritic and rheumatoid synovial fibroblasts. Arthritis and Rheumatism, 2008,58(4):1086-1095.
[45] Koo O M Y, Rubinstein I, Onyüksel H. Actively targeted low-dose camptothecin as a safe, long-acting, disease-modifying nanomedicine for rheumatoid arthritis. Pharmaceutical Research, 2011,28(4):776-787.
doi: 10.1007/s11095-010-0330-4 pmid: 21132352
[1] 吕慧中,赵晨辰,朱链,许娜. 外泌体靶向递药在肿瘤治疗中的进展[J]. 中国生物工程杂志, 2021, 41(5): 79-86.
[2] 吴忧,辛林. 新的药物传递系统:外泌体作为药物载体递送*[J]. 中国生物工程杂志, 2020, 40(9): 28-35.
[3] 蒋丹丹,王云龙,李玉林,张怡青. 含RGD修饰的病毒样颗粒递送ICG靶向肿瘤的研究 *[J]. 中国生物工程杂志, 2020, 40(7): 22-29.
[4] 肖雪筠,唐奇,新华·那比. 靶向肿瘤微环境的CAR-T治疗研究*[J]. 中国生物工程杂志, 2020, 40(12): 67-74.
[5] 曹文杰,熊向源,龚妍春,李资玲,李玉萍. 高分子囊泡在药物释放体系的应用 *[J]. 中国生物工程杂志, 2019, 39(6): 62-72.
[6] 蒋析文,董子维,刘悦,朱小亚. 生物标记物与精准医疗研究进展[J]. 中国生物工程杂志, 2019, 39(2): 74-81.
[7] 陈坤, 曹雪玮, 张琴, 赵健, 王富军. EGF类生长因子来源的新型靶向肽在抗肿瘤药物蛋白中的应用[J]. 中国生物工程杂志, 2017, 37(3): 1-9.
[8] 明金玉, 李化丹, 梁士博, 何莉, 于青含, 李集临, 张延明. 植物功能性靶向基因标记的研究进展[J]. 中国生物工程杂志, 2017, 37(3): 83-91.
[9] 周忠厅, 张权, 王胜涛, 蔡颖, 中西秀树, 尹健. 共价连接BODIPY光敏剂的聚合物纳米胶束及其靶向光动力疗效的研究[J]. 中国生物工程杂志, 2017, 37(10): 33-41.
[10] 秦海霞, 崔红凯, 潘莹, 户瑞丽, 朱利红, 王世进. miR-335靶向Rho相关卷曲螺旋形成蛋白激酶1对卵巢癌细胞增殖的影响[J]. 中国生物工程杂志, 2016, 36(6): 24-31.
[11] 刘怡萱, 边珍, 马红梅. 癌症基因治疗技术进展与展望[J]. 中国生物工程杂志, 2016, 36(5): 106-111.
[12] 何敏瑜, 冉海涛. 核酸适配体结合纳米材料用于肿瘤靶向治疗[J]. 中国生物工程杂志, 2015, 35(4): 86-91.
[13] 唐德平, 毛爱红, 王芳, 张虹, 王黎, 廖世奇. 适配体介导脂质体靶向递送siRNA的研究[J]. 中国生物工程杂志, 2015, 35(1): 54-60.
[14] 薛玉文, 李铁军, 周家名, 陈莉. 多靶向RNA干扰技术在基因治疗中的应用与前景[J]. 中国生物工程杂志, 2015, 35(1): 75-81.
[15] 庄军, 吴祖建. TAL效应子介导基因组DNA的靶向修饰[J]. 中国生物工程杂志, 2014, 34(8): 74-80.