Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (2/3): 53-62    DOI: 10.13523/j.cb.2011050
技术与方法     
强化底物利用酶系表达,提升地衣芽孢杆菌生产碱性蛋白酶性能
周惠颖1,周翠霞1,2,张婷1,王雪雨1,张会图1,冀颐之3,*(),路福平1,*()
1 天津科技大学生物工程学院 工业发酵微生物教育部重点实验室 天津 300457
2 泰山学院生物与酿酒工程学院 泰安 271000
3 北京联合大学生物化学工程学院 生物质废弃物资源化利用北京市重点实验室 北京 100023
Enhancing the Expression of the Substrate by the Extracellular Secreted Enzymes and Improving the Alkaline Protease Production in Bacillus licheniformis
ZHOU Hui-ying1,ZHOU Cui-xia1,2,ZHANG Ting1,WANG Xue-yu1,ZHANG Hui-tu1,JI Yi-zhi3,*(),LU Fu-ping1,*()
1 Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education,College of Biotechnology,Tianjin University of Science &Technology, Tianjin 300457, China
2 College of Biology and Brewing Engineering, Taishan University, Taian 271000,China
3 Beijing Key Laboratory of Biomass Waste Resource Utilization, College of Biochemical Engineering,Beijing Union University, Beijing 100023,China
 全文: PDF(3283 KB)   HTML
摘要:

地衣芽孢杆菌2709由于易于培养、GRAS状态和完善的蛋白质分泌能力,是已经投入工业生产碱性蛋白酶的菌株。为改善该菌株的发酵生产性能,提高菌体对培养基成分的利用和碱性蛋白酶产量,对菌株的胞外分泌酶系进行完善。利用同源重组机制,在基因组复制起始位点附近引入了来源于短小芽孢杆菌的木聚糖酶基因xynA和在复制起始位点中心对称的位置引入耶氏解脂酵母来源的脂肪酶基因lipY2。整合菌株在摇瓶发酵44h时,木聚糖酶、脂肪酶酶活力分别达(58±2.07)U/mL和(207±10.62)U/mL,其分泌表达促进了地衣芽孢杆菌对发酵培养基的分解与利用,提高了培养基中还原糖、上清总氮的含量和沉淀中含氮化合物的分解;细菌生物量较地衣芽孢杆菌原始菌株提高了11.76%,同时碱性蛋白酶的发酵周期较原始菌提前了4h,碱性蛋白酶产量提高了14.41%。地衣芽孢杆菌2709分泌酶系的丰富和发酵性能的改善为在饲料行业中作为微生物制剂的地衣芽孢杆菌提供了改造的方法。

关键词: 地衣芽孢杆菌木聚糖酶脂肪酶碱性蛋白酶    
Abstract:

Bacillus licheniformis 2709 is a strain of alkaline protease that has been put into industrial production due to its easy cultivation, GRAS status and perfect protein secretion ability. In order to improve the fermentation production performance of the strain, increase the utilization of culture medium components and the production of alkaline protease by the bacteria, the extracellular secretion enzyme system has been improved. With the help of homologous recombination mechanism, the xylanase gene (xynA) from Bacillus pumilus was introduced near the origin of replication and the lipase gene (lipY2) from Yarrowia lipolytica was introduced into the center of the origin of replication. The results showed that the activity of xylanase and lipase reached(58±2.07)U/mL and (207±10.62)U/mL, respectively when the strain was fermented in shake flask for 44h. Their efficient secretion and expression ability promoted the utilization rate of the fermentation substrate by Bacillus licheniformis, thus increasing the content of reducing sugar and total nitrogen in the medium and decomposing nitrogen compounds in the precipitate. Compared with the original strain, the bacterial biomass of the mutant strain was increased by 11.76%, the fermentation cycle of alkaline protease was shortened by 4h, and the yield of alkaline protease was increased by 14.41%. The enrichment of the secreted enzymes and the improvement of fermentation performance of Bacillus licheniformis 2709 provide a method for modification of Bacillus licheniformis as a microbial agent in the feed industry.

Key words: Bacillus licheniformis    Xylanase    Lipase    Alkaline protease
收稿日期: 2020-11-27 出版日期: 2021-04-08
ZTFLH:  Q815  
通讯作者: 冀颐之,路福平     E-mail: jiyizhi@buu.edu.cn;lfp@tust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
周惠颖
周翠霞
张婷
王雪雨
张会图
冀颐之
路福平

引用本文:

周惠颖,周翠霞,张婷,王雪雨,张会图,冀颐之,路福平. 强化底物利用酶系表达,提升地衣芽孢杆菌生产碱性蛋白酶性能[J]. 中国生物工程杂志, 2021, 41(2/3): 53-62.

ZHOU Hui-ying,ZHOU Cui-xia,ZHANG Ting,WANG Xue-yu,ZHANG Hui-tu,JI Yi-zhi,LU Fu-ping. Enhancing the Expression of the Substrate by the Extracellular Secreted Enzymes and Improving the Alkaline Protease Production in Bacillus licheniformis. China Biotechnology, 2021, 41(2/3): 53-62.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2011050        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I2/3/53

Strains or plasmids Description Source
E. coli EC135 Knockout vectors construction Chinese Academy of Science
E. coli EC135/pM.Bam Plasmid DNA methylation modifcation Chinese Academy of Science
B. licheniformis 2709(BL 2709) Wild strain CICC
Bacillus pumilus A30 PCR template of xylanase mature peptide gene CICC
pKSVT Temperature-sensitive shuttle plasmid, Kanar Hubei University
pPIC9K-mutants PCR template of lipase mature peptide gene [14]
Primer name Sequence (5'-3') Restriction sites
xyn-F CGATTGGCATTTCACCCCATCAATACGCCTTTCACATGA
xyn-R GATGAGGTGTGGGTAGGGCCATCCGACGATCAT
lip-F CGTCGATCATGCGTCAGCCATCAATACGCCTTTCACATG
lip-R GAGGTGAAGCAGAAGACGGCCATCCGACGATCAT
up-xF GAATTCCTGCAGCCCGGGGGATCCTAGGTCCCGACTAACCCTGAG BamHI
up-xR GTGAAAGGCGTATTGATGGGGTGAAATGCCAATCGA
down-xF ATGATCGTCGGATGGCCCTACCCACACCTCATCCCC
down-xR CTTTTCTACGAGCTCCACCGCGGAGCCCAAACCAAGAGGCT SacII
up-lF GAATTCCTGCAGCCCGGGGGATCCACGATGAAACGGGATCGC BamHI
up-lR GAAAGGCGTATTGATGGCTGACGCATGATCGACG
down-lF ATGATCGTCGGATGGCCGTCTTCTGCTTCACCTCAAATAAC
down-lR GAATTCCTGCAGCCCGGGGGATCCCCGGATACAATTCGGCTG SacII
T-F GATAACTCGGCGTATGTTATTCAAG
T-R GAAGTGGTGGCCTAACTACGG
V1-F CAATACCGCGCTTACCCTATC
V1-R GTAATGGAGCAGTATCCATATCTGAA
V2-F GATGCTTCCACCGGAAGTTG
V2-R AGGTATCGCCGCTGCATAC
表1  试验所使用的菌株、载体与引物
图1  构建整合载体各片段和重组载体PCR验证
图2  突变菌株PCR验证
图3  基因编辑技术原理和表达盒在基因组的插入位置
图4  BL 2709-xynA-lipY2和BL 2709的细胞生物量的变化曲线
图5  BL 2709-xynA-lipY2和BL 2709菌株发酵液中还原糖含量的变化曲线
图6  BL 2709-xynA-lipY2和BL 2709菌株发酵培养基中总氮的含量变化曲线
图7  BL 2709-xynA-lipY2菌株木聚糖酶活力变化曲线
图8  BL 2709-xynA-lipY2和BL 2709菌株脂肪酶活力变化曲线
图9  BL 2709-xynA-lipY2和BL 2709碱性蛋白酶活力变化曲线
[1] Zhou C, Zhou H Y, Zhang H T, et al. Optimization of alkaline protease production by rational deletion of sporulation related genes in Bacillus licheniformis. Microbial Cell Factories, 2019,18(1):1-12.
doi: 10.1186/s12934-018-1049-x pmid: 30609921
[2] 俞俊棠, 唐孝宣, 邬行彦, 等. 新编生物工艺学. 北京:化学工业出版社, 2003.
Yu J T, Tang X X, Wu X Y, et al. New edition of biotechnology. Beijing:Chemical Industry Press, 2003.
[3] Frias J, Song Y S, Martinez-Villaluenga C, et al. Immunoreactivity and amino acid content of fermented soybean products. Journal of Agricultural and Food Chemistry, 2008,56(1):99-105.
doi: 10.1021/jf072177j pmid: 18072744
[4] 陈龙, 吴兴利, 于维, 等. Bacillus velezensis157混合固态发酵生产多种木质纤维素酶的发酵条件优化. 中国农业大学学报, 2019,24(9):71-78.
Chen L, Wu X L, Yu W, et al. Optimization of fermentation conditions for the production of various lignocellulases by Bacillus velezensis 157 under solid-state fermentation. Journal of China Agricultural University, 2019,24(9):71-78.
[5] Li M, Chen Z, Zhang X, et al. Enhancement of avermectin and ivermectin production by overexpression of the maltose ATP-binding cassette transporter in Streptomyces avermitilis. Bioresource Technology, 2010,101(23):9228-9235.
[6] Zhan Y Y, Sheng B J, Wang H, et al. Rewiring glycerol metabolism for enhanced production of poly-γ-glutamic acid in Bacillus licheniformis. Biotechnology for Biofuels, 2018,11(1):1-14.
[7] Cai D B, Zhang B W, Rao Y, et al. Improving the utilization rate of soybean meal for efficient production of bacitracin and heterologous proteins in the aprA deficient strain of Bacillus licheniformis. Applied Microbiology and Biotechnology, 2019,103(12):4789-4799.
[8] 高雅君, 丁长河. 木聚糖酶在食品工业中的应用研究进展. 粮食与食品工业, 2017,24(2):32-36.
Gao Y J, Ding C H. Research progress on the application of xylanase in food industry. Cereal & Food Industry, 2017,24(2):32-36.
[9] Gutiérrez-Ayesta C, Carelli A A, Ferreira M L. Relation between lipase structures and their catalytic ability to hydrolyse triglycerides and phospholipids. Enzyme and Microbial Technology, 2007,41(1-2):35-43.
[10] 马文锋, 毛培, 刘芦鹏, 等. 木聚糖酶和果胶酶对小麦-玉米-豆粕型日粮的体外酶解研究. 家畜生态学报, 2020,41(6):41-45.
Ma W F, Mao P, Liu L P, et al. Effect of xylanase and pectinase on the enzymolysis efficiency in wheat-corn-soybean meal diet by in vitro method. Journal of Domestic Animal Ecology, 2020,41(6):41-45.
[11] Liu Y H, Shi C S, Li D K, et al. Engineering a highly efficient expression system to produce BcaPRO protease in Bacillus subtilis by an optimized promoter and signal peptide. International Journal of Biological Macromolecules, 2019,138:903-911.
pmid: 31356949
[12] Cai D, Wei X, Qiu Y, et al. High-level expression of nattokinase in Bacillus licheniformis by manipulating signal peptide and signal peptidase. Journal of Applied Microbiology, 2016,121(3):704-712.
doi: 10.1111/jam.13175 pmid: 27159567
[13] Zhang W, Yang Y K, Liu X X, et al. Development of a secretory expression system with high compatibility between expression elements and an optimized host for endoxylanase production in Corynebacterium glutamicum. Microbial Cell Factories, 2019,18(1):72-82.
[14] 张莹. 脂肪酶LipY2热稳定性的理性改造. 天津: 天津科技大学, 2018.
Zhang Y. Improvement of thermal stability of lipase LipY2 by rational transformation. Tianjin: Tianjin University of Science & Technology, 2018.
[15] 萨姆布鲁克J, 拉塞尔 D. 分子克隆实验指南. 第三版. 黄培堂译. 北京: 科学出版社, 2002.
Sambrook J, Russell D. Molecular cloning experiment guide. 3rd ed. Huang P T. Beijing:Science Press, 2002.
[16] 国家食品药品监督管理总局, 国家卫生和计划生育委员会. 食品安全国家标准食品微生物学检验乳酸菌检验. GB 4789.35-2016. 北京:中国标准出版社, 2016: 1-8.
State Food and Drug Administration, State Health and Family Planning Commission. National food safety standard.food microbiological examination:lactic acid bacteria. GB 4789.35-2016. Beijing: China Standard Press, 2016: 1-8.
[17] 赵凯, 许鹏举, 谷广烨. 3,5-二硝基水杨酸比色法测定还原糖含量的研究. 食品科学, 2008,29(8):534-536.
Zhao K, Xu P J, Gu G Y. Study on determination of reducing sugar content using 3, 5-dinitrosalicylic acid method. Food Science, 2008,29(8):534-536.
[18] 国家市场监督管理总局, 中国国家标准化管理委员会. 饲料中粗蛋白的测定凯氏定氮法. GB/T 6432-2018. 北京:中国标准出版社, 2018: 1-4.
State Administration of Market Supervision and Administration, China National Standardization Administration. Determination of crude protein in feeds-Kjeldahl method. GB/T 6432-2018. Beijing:China Standard Press, 2018: 1-4.
[19] Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 1959,31(3):426-428.
[20] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 脂肪酶制剂. GB/T 23535-2009. 北京:中国标准出版社, 2009: 1-9.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, China National Standardization Administration Lipase preparations. GB/T 23535-2009. Beijing:China Standard Press, 2009: 1-9.
[21] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 蛋白酶制剂. GB/T 23527-2009. 北京:中国标准出版社, 2009: 1-13.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, China National Standardization Administration Protease preparations. GB/T 23527-2009. Beijing:China Standard Press, 2009: 1-13.
[22] 王斌, 张腾霄, 刘利军, 等. 枯草芽孢杆菌对灵芝发酵液糖类成分降解规律研究. 食品工业, 2017,38(9):184-187.
Wang B, Zhang T X, Liu L J, et al. Influence the degradation of sugars in ganoderma lucidum fermentation broth by Bacillus subtilis. The Food Industry, 2017,38(9):184-187.
[23] Yu X X, Xu J T, Liu X Q, et al. Identification of a highly efficient stationary phase promoter in Bacillus subtilis. Scientific Reports, 2015,5:18405.
doi: 10.1038/srep18405 pmid: 26673679
[24] 王越. 长野芽孢杆菌普鲁兰酶基因在枯草芽孢杆菌中的整合表达. 无锡: 江南大学, 2019.
Wang Y. Integrative expression of Bacillus naganoensis pullulanase from Bacillus subtilis. Wuxi: Jiangnan University, 2019.
[25] 张飞燕, 何敏, 王振华, 等. 铜绿假单胞菌脂肪酶基因(LipA)在枯草芽孢杆菌pab02中的整合表达. 湖南农业大学学报(自然科学版), 2017,43(2):200-205.
Zhang F Y, He M, Wang Z H, et al. Clone and integrative expression of gene lipase LipA from Pseudomonas aeruginosa in Bacillus subtilis. Journal of Hunan Agricultural University (Natural Science), 2017,43(2):200-205.
[26] Veith B, Herzberg C, Steckel S, et al. The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. Journal of Molecular Microbiology and Biotechnology, 2004,7(4):204-211.
doi: 10.1159/000079829 pmid: 15383718
[27] Guan C R, Cui W J, Cheng J T, et al. Construction of a highly active secretory expression system via an engineered dual promoter and a highly efficient signal peptide in Bacillus subtilis. New Biotechnology, 2016,33(3):372-379.
[28] 饶忆, 师璐, 王豪, 等. 通过优化表达元件及培养基组分提高地衣芽胞杆菌中碱性丝氨酸蛋白酶产量. 微生物学通报, 2019,46(6):1327-1335.
Rao Y, Shi L, Wang H, et al. Enhancement production of subtilisin in Bacillus licheniformis by screening promoters and signal peptides and optimization of fermentation medium. Microbiology China, 2019,46(6):1327-1335.
[29] 魏强, 张薇, 石黑虎, 等. 地衣芽孢杆菌(Bacillus licheniformis)10236发酵条件的优化. 河北农业科学, 2019,23(5):65-70.
Wei Q, Zhang W, Shi H H, et al. Optimization of Fermentation Conditions of Bacillus licheniformis 10236. Journal of Hebei Agricultural Sciences, 2019,23(5):65-70.
[30] 王珊珊, 陈燕, 刘盾, 等. 地衣芽孢杆菌LS-1产蛋白酶发酵条件的优化. 安徽农学通报, 2018,24(24):22-24.
Wang S S, Chen Y, Liu D, et al. Optimization of fermentation conditions of a protease-producing strain LS-1. Anhui Agricultural Science Bulletin, 2018,24(24):22-24.
[31] Gu Y, Lv X, Liu Y F, et al. Synthetic redesign of central carbon and redox metabolism for high yield production of N-acetylglucosamine in Bacillus subtilis. Metabolic Engineering. 2019,51:59-69.
doi: 10.1016/j.ymben.2018.10.002 pmid: 30343048
[32] Kaczmarek S A, Rogiewicz A, Mogielnicka M, et al. The effect of protease, amylase, and nonstarch polysaccharide-degrading enzyme supplementation on nutrient utilization and growth performance of broiler chickens fed corn-soybean meal-based diets. Poultry Science, 2014,93(7):1745-1753.
doi: 10.3382/ps.2013-03739 pmid: 24864284
[1] 魏子翔,张柳群,雷磊,韩正刚,杨江科. 疏棉状嗜热丝孢菌(Thermomyces lanuginosus)脂肪酶的理性设计提高其活性和温度稳定性[J]. 中国生物工程杂志, 2021, 41(2/3): 63-69.
[2] 朱衡,张继福,张云,胡云峰. 环氧交联剂和氨基载体固定化海洋假丝酵母脂肪酶*[J]. 中国生物工程杂志, 2020, 40(5): 57-68.
[3] 朱衡,张继福,张云,孙爱君,胡云峰. 聚乙二醇二缩水甘油醚交联氨基载体LX-1000EA固定化脂肪酶 *[J]. 中国生物工程杂志, 2020, 40(1-2): 124-132.
[4] 朱衡,林海蛟,张继福,张云,孙爱君,胡云峰. 氨基载体共价结合固定化海洋假丝酵母脂肪酶 *[J]. 中国生物工程杂志, 2019, 39(7): 71-78.
[5] 李吉萍,包昌杰,陈光,张斯童. 木聚糖酶异源表达的研究进展 *[J]. 中国生物工程杂志, 2019, 39(7): 91-99.
[6] 林海蛟,张继福,张云,孙爱君,胡云峰. 添加剂对大孔吸附树脂固定化脂肪酶的影响 *[J]. 中国生物工程杂志, 2019, 39(4): 38-51.
[7] 姚银,闵琪,熊海容,张莉. 木聚糖酶和甘露聚糖酶在毕赤酵母中的共表达及产酶分析 *[J]. 中国生物工程杂志, 2019, 39(3): 37-45.
[8] 史超硕,李登科,曹雪,袁航,张钰文,于江悦,路福平,李玉. 两个不同启动子及其组合对碱性蛋白酶AprE异源表达的影响 *[J]. 中国生物工程杂志, 2019, 39(10): 17-23.
[9] 石红璆,查代明,张炳火,李汉全. 全细胞脂肪酶研究进展 *[J]. 中国生物工程杂志, 2018, 38(11): 51-58.
[10] 杨青, 汪斌, 王亚伟, 张华山, 熊海容, 张莉. 介导两种半纤维素酶分泌表达的信号肽比较[J]. 中国生物工程杂志, 2017, 37(8): 15-22.
[11] 虞晓丹, 吴秀秀, 姚冬生, 刘大岭, 谢春芳. 基于分子结构评价的Bacillus subtilis β-1,4-内切木聚糖酶胰蛋白酶抗性的理性设计[J]. 中国生物工程杂志, 2016, 36(8): 80-88.
[12] 曹莹莹, 邓盾, 张云, 孙爱君, 夏方亮, 胡云峰. 南海深海新颖低温脂肪酶的克隆、表达及酶学性质鉴定[J]. 中国生物工程杂志, 2016, 36(3): 43-52.
[13] 吴芹, 胡蝶, 李雪晴, 袁风娇, 李剑芳, 邬敏辰. Y13F定点突变改良米曲霉中温木聚糖酶的耐热性[J]. 中国生物工程杂志, 2016, 36(12): 36-41.
[14] 韩海红, 汪俊卿, 王腾飞, 肖静, 韩登兰, 王瑞明. 一种基于单交换原理的地衣芽孢杆菌基因敲除方法及应用[J]. 中国生物工程杂志, 2016, 36(11): 63-69.
[15] 周勇, 徐刚, 杨立荣, 吴坚平. 信号肽优化在枯草芽孢杆菌体系中对脂肪酶LipS分泌表达的影响[J]. 中国生物工程杂志, 2015, 35(9): 42-49.