Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (1): 20-29    DOI: 10.13523/j.cb.2008140
研究报告     
工业模式微生物膜有序性的活细胞定量分析 *
吕雪芹,金柯,刘家恒,崔世修,李江华,堵国成,刘龙()
江南大学未来食品科技中心 化学与生物技术教育部重点实验室 无锡 214122
Quantitative Analysis of Membrane Ordering of Living Industrial Model Microorganisms
LV Xue-qin,JIN Ke,LIU Jia-heng,CUI Shi-xiu,LI Jiang-hua,DU Guo-cheng,LIU Long()
Science Center for Future Foods, Jiangnan University, Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Wuxi 214122, China
 全文: PDF(61192 KB)   HTML
摘要:

作为一种相位敏感的荧光探针,Di-4-ANEPPDHQ可以特异性标记膜的有序相和无序相,在理论上可以对细胞膜的有序性进行定量成像。通过将Di-4-ANEPPDHQ和激光扫描共聚焦显微术相结合,对多种具有代表性的工业模式微生物进行了有序相和无序相活细胞成像,结合极性归一化数值的统计比较,最终实现对上述工业模式微生物细胞膜有序性的定量分析,为细胞膜工程提供了一种直观且快速的活细胞检测方法。

关键词: 工业模式微生物Di-4-ANEPPDHQ膜有序性活细胞成像    
Abstract:

As a phase sensitive fluorescent probe, Di-4-ANEPPDHQ can specifically label the ordered phase and disordered phase of membrane. Therefore, in theory, the probe can be used to quantitatively image the order of cell membrane. By combining Di-4-ANEPPDHQ and laser scanning confocal microscopy, the ordered phase and disordered phase live-cell imaging of a variety of representative industrial model microorganisms were carried out. Combined with the statistical comparison of polarity normalization values, the quantitative analysis of the cell membrane ordering of the above industrial model microorganisms is finally realized. The above study provides an intuitive and rapid detection method of living cells for cell membrane engineering.

Key words: Industrial model microorganisms    Di-4-ANEPPDHQ    Membrane ordering    Live-cell imaging
收稿日期: 2020-08-27 出版日期: 2021-02-09
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(21808084);国家重点研发计划(2018YFA0900300)
通讯作者: 刘龙     E-mail: liulong@jiangnan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吕雪芹
金柯
刘家恒
崔世修
李江华
堵国成
刘龙

引用本文:

吕雪芹, 金柯, 刘家恒, 崔世修, 李江华, 堵国成, 刘龙. 工业模式微生物膜有序性的活细胞定量分析 *[J]. 中国生物工程杂志, 2021, 41(1): 20-29.

LV Xue-qin, JIN Ke, LIU Jia-heng, CUI Shi-xiu, LI Jiang-hua, DU Guo-cheng, LIU Long. Quantitative Analysis of Membrane Ordering of Living Industrial Model Microorganisms. China Biotechnology, 2021, 41(1): 20-29.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2008140        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I1/20

图1  Di-4-ANEPPDHQ分子结构式
图2  酿酒酵母Di-4-ANEPPDHQ的发射光谱分析
图3  酿酒酵母膜有序度分析
图4  大肠杆菌DI-4-ANEPPDHQ染色效果分析
图5  枯草芽孢杆菌中DI-4-ANEPPDHQ的发射光谱和膜有序度分析
图6  巨大芽孢杆菌和谷氨酸棒杆菌中Di-4-ANEPPDHQ发射光谱的分析和比较
图7  三种革兰氏阳性菌之间的膜有序度分析和比较
图8  BS-168和BS-MK7菌株中MK-7的产量
图9  不同枯草芽孢改造菌株中膜有序度分析
[1] Kim J E, Jang I S, Son S H, et al. Tailoring the Saccharomyces cerevisiae endoplasmic reticulum for functional assembly of terpene synthesis pathway. Metabolic Engineering, 2019,56:50-59.
pmid: 31445083
[2] Meng Y, Shao X, Wang Y, et al. Extension of cell membrane boosting squalene production in the engineered Escherichia coli. Biotechnology and Bioengineering, 2020, Doi: 10.1002/bit.27511.
[3] Cui S, Lv X, Wu Y, et al. Engineering a bifunctional Phr60-Rap60-Spo0A quorum-sensing molecular switch for dynamic fine-tuning of menaquinone-7 synthesis in Bacillus subtilis. ACS Synthetic Biology, 2019,8(8):1826-1837.
pmid: 31257862
[4] Cui S X, Xia H Z, Chen T C, et al. Cell membrane and electron transfer engineering for improved synthesis of menaquinone-7 in Bacillus subtilis. iScience, 2020,23(3):100918.
pmid: 32109677
[5] Wu T, Ye L J, Zhao D D, et al. Membrane engineering-a novel strategy to enhance the production and accumulation of β-carotene in Escherichia coli. Metabolic Engineering, 2017,43(Pt A):85-91.
pmid: 28688931
[6] Xu X, Bittman R, Duportail G, et al. Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). The Journal of Biological Chemistry, 2001,276(36):33540-33546.
doi: 10.1074/jbc.M104776200 pmid: 11432870
[7] Xu X, London E. The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation. Biochemistry, 2000,39(5):843-849.
pmid: 10653627
[8] Bramkamp M, Lopez D. Exploring the existence of lipid rafts in bacteria. Microbiology and Molecular Biology Reviews: MMBR, 2015,79(1):81-100.
doi: 10.1128/MMBR.00036-14 pmid: 25652542
[9] Lopez D, Kolter R. Functional microdomains in bacterial membranes. Genes & Development, 2010,24(17):1893-1902.
[10] Obaid A L, Loew L M, Wuskell J P, et al. Novel naphthylstyryl-pyridinium potentiometric dyes offer advantages for neural network analysis. Journal of Neuroscience Methods, 2004,134(2):179-190.
[11] Jin L, Millard A C, Wuskell J P, et al. Characterization and application of a new optical probe for membrane lipid domains. Biophysical Journal, 2006,90(7):2563-2575.
pmid: 16415047
[12] Jin L, Millard A C, Wuskell J P, et al. Cholesterol-enriched lipid domains can be visualized by di-4-ANEPPDHQ with linear and nonlinear optics. Biophysical Journal, 2005,89(1):L04-L06.
[13] Owen D M, Rentero C, Magenau A, et al. Quantitative imaging of membrane lipid order in cells and organisms. Nature Protocols, 2011,7(1):24-35.
pmid: 22157973
[14] Zhao X Y, Li R L, Lu C F, et al. Di-4-ANEPPDHQ, a fluorescent probe for the visualisation of membrane microdomains in living Arabidopsis thaliana cells. Plant Physiology and Biochemistry, 2015,87:53-60.
pmid: 25549979
[15] Yan X, Yu H J, Hong Q, et al. Cre/lox system and PCR-based genome engineering in Bacillus subtilis. Applied and Environmental Microbiology, 2008,74(17):5556-5562.
pmid: 18641148
[16] Wang Y, Jing G S, Perry S, et al. Spectral characterization of the voltage-sensitive dye di-4-ANEPPDHQ applied to probing live primary and immortalized neurons. Optics Express, 2009,17(2):984-990.
[17] Surma M A, Klose C, Simons K. Lipid-dependent protein sorting at the trans-Golgi network. Biochimica et Biophysica Acta, 2012,1821(8):1059-1067.
[18] Simons K, Sampaio J L. Membrane organization and lipid rafts. Cold Spring Harbor Perspectives in Biology, 2011,3(10):a004697.
doi: 10.1101/cshperspect.a004697 pmid: 21628426
[19] Kirkham M, Parton R G. Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers. Biochimica et Biophysica Acta, 2005,1745(3):273-286.
[20] Tsuji T, Fujimoto T. Lipids and lipid domains of the yeast vacuole. Biochemical Society Transactions, 2018,46(5):1047-1054.
[21] Lopez D, Koch G. Exploring functional membrane microdomains in bacteria: an overview. Current Opinion in Microbiology, 2017,36:76-84.
[22] Lv X Q, Wu Y K, Tian R Z, et al. Synthetic metabolic channel by functional membrane microdomains for compartmentalized flux control. Metabolic Engineering, 2020,59:106-118.
pmid: 32105784
[23] Lv X Q, Zhang C, Cui S X, et al. Assembly of pathway enzymes by engineering functional membrane microdomain components for improved N-acetylglucosamine synthesis in Bacillus subtilis. Metabolic Engineering, 2020,61:96-105.
pmid: 32502621
[1] 林敏. 玉米生物育种基础研究与关键技术[J]. 中国生物工程杂志, 2021, 41(12): 1-3.
[2] 吴函蓉,王莹,黄英明,李冬雪,李治非,方子寒,范玲. 以基地平台为抓手,促进生物技术创新与转化[J]. 中国生物工程杂志, 2021, 41(12): 141-147.
[3] 尹泽超,王晓芳,龙艳,董振营,万向元. 玉米穗腐病抗性鉴定、遗传分析与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 103-115.
[4] 冷燕,孙康泰,刘倩倩,蒲阿庆,李翔,万向元,魏珣. 全球基因编辑作物监管趋势研究[J]. 中国生物工程杂志, 2021, 41(12): 24-29.
[5] 何伟,祝蕾,刘欣泽,安学丽,万向元. 玉米遗传转化与商业化转基因玉米开发*[J]. 中国生物工程杂志, 2021, 41(12): 13-23.
[6] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[7] 殷芳冰,王成,龙艳,董振营,万向元. 玉米雌穗性状遗传分析与形成机制*[J]. 中国生物工程杂志, 2021, 41(12): 30-46.
[8] 秦文萱,刘鑫,龙艳,董振营,万向元. 玉米叶夹角形成的遗传基础与分子机制解析*[J]. 中国生物工程杂志, 2021, 41(12): 74-87.
[9] 王锐璞,董振营,高悦欣,龙艳,万向元. 玉米籽粒淀粉含量遗传基础与调控机制*[J]. 中国生物工程杂志, 2021, 41(12): 47-60.
[10] 马雅杰,高悦欣,李依萍,龙艳,董振营,万向元. 玉米株高和穗位高的遗传基础与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 61-73.
[11] 王彦博,魏佳,龙艳,董振营,万向元. 玉米雄穗性状遗传结构与形成分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 88-102.
[12] 毛开云,李荣,李丹丹,赵若春,范月蕾,江洪波. 全球双特异性抗体药物研发格局分析*[J]. 中国生物工程杂志, 2021, 41(11): 110-118.
[13] 吴函蓉,王莹,杨力,葛瑶,范玲. 我国生物技术基地平台现状与发展建议[J]. 中国生物工程杂志, 2021, 41(11): 119-123.
[14] 刘天义,冯卉,SALSABEELYousuf,解领丽,苗向阳. lncRNA在动物脂肪沉积中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 82-88.
[15] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.