Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (1): 12-19    DOI: 10.13523/j.cb.2008123
研究报告     
利用大肠杆菌细胞工厂生产吲哚-3-乙酸的研究 *
吴弘轩1,杨金花1,沈培杰1,李清晨1,黄建忠1,祁峰1,2,**()
1 福建师范大学生命科学学院 工业微生物发酵技术国家地方联合工程研究中心 福州 350117
2 福建师范大学细胞逆境响应与代谢调控福建省高校重点实验室 福州 350108
Study on the Production of Indole-3-acetic Acid Using E. coli Cell Factory
WU Hong-xuan1,YANG Jin-hua1,SHEN Pei-jie1,LI Qing-chen1,HUANG Jian-zhong1,QI Feng1,2,**()
1 School of Life Science, National and Local Joint Engineering Research Center of Industrial Microbial Fermentation Technology,Fujian Normal University, Fuzhou 350117, China
2 Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation,College of Life Sciences, Fujian Normal University, Fuzhou 350108, China
 全文: PDF(16123 KB)   HTML
摘要:

目的:利用重组大肠杆菌全细胞转化色氨酸生产IAA。方法:在大肠杆菌胞内构建两条全新的IAA合成途径,即吲哚-3-乙酰胺(indole-3-acetamide, IAM)途径和色胺(tryptamine, TRP)途径。结果:IAM途径涉及两个酶,分别是色氨酸-2-单加氧酶(IAAM)和酰胺酶(AMI1),构建好的重组大肠杆菌TPA-4以2g/L的色氨酸为底物,可以产生0.803g/L的IAA;敲除控制色氨酸合成副产物吲哚的tnaA基因后,菌株MPA-3的IAA产量达到1.43g/L,提高了78%。第二条TRP途径合成IAA涉及三个酶:左旋色氨酸脱羧酶(TDC),二胺氧化酶(AOC1)和吲哚-3-乙醛脱氢酶(IAD1)。包含这条途径的重组大肠杆菌TPTA-2以2g/L的色氨酸为底物能够合成13.0mg/L的IAA。在菌株MPTA-3中,最终产生了21.0mg/L的IAA,产量增加了61.5%。结论:首次通过IAM途径和TRP途径利用重组大肠杆菌全细胞催化生产IAA,其中IAM途径的IAA产量较高,有较高的工业化应用前景。

关键词: 色氨酸吲哚-3-乙酸吲哚-3-乙酰胺色胺全细胞催化大肠杆菌    
Abstract:

Objective: Indole-3-acetic acid (IAA) was produced from tryptophan in the metabolically engineered E. coli MG1655 using whole-cell catalysis. Methods: Two novel IAA biosynthetic pathways, the indole-3-acetamide (IAM) pathway and the tryptamine (TRP) pathway, were constructed in E. coli MG1655. Results: The IAM pathway involves two enzymes, tryptophan-2- monooxygenase (IAAM) and amidase (AMI1). 2g/L tryptophan as a substrate was used by the constructed recombinant E. coli strain TPA-4. TPA-4 can produce 0.803g/L of IAA; however, in the strain MPA-3 that was knocked out the gene tnaA which divert flux from tryptophan synthesis, the yield of IAA reached 1.43g/L, an increase of 78% compared with the control. The second TRP pathway biosynthesis of IAA involves three enzymes: L-tryptophan decarboxylase (TDC), diamine oxidase (AOC1) and indole-3-acetaldehyde dehydrogenase (IAD1). The recombinant E.coli TPTA-2 that included the TRP pathway can only synthesize 13.0mg/L IAA with 2g/L tryptophan as substrate. In the strain MPTA-3 with disruption of tnaA gene, 21.0mg/L of IAA was finally produced, and the yield increased by 61.5%. Conclusion: It is the first report to realize production of IAA using the metabolically engineered E. coli through the IAM pathway and TRP pathway via whole-cell catalysis. IAA production from the IAM pathway is relatively higher, and it probably has an industrial application prospect.

Key words: Tryptophan    Indole-3-acetic acid    Indole-3-acetamide    Tryptamine    Whole cell catalysis    E. coli
收稿日期: 2020-08-14 出版日期: 2021-02-09
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(21406130)
通讯作者: 祁峰     E-mail: f.qi@fjnu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吴弘轩
杨金花
沈培杰
李清晨
黄建忠
祁峰

引用本文:

吴弘轩, 杨金花, 沈培杰, 李清晨, 黄建忠, 祁峰. 利用大肠杆菌细胞工厂生产吲哚-3-乙酸的研究 *[J]. 中国生物工程杂志, 2021, 41(1): 12-19.

WU Hong-xuan, YANG Jin-hua, SHEN Pei-jie, LI Qing-chen, HUANG Jian-zhong, QI Feng. Study on the Production of Indole-3-acetic Acid Using E. coli Cell Factory. China Biotechnology, 2021, 41(1): 12-19.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2008123        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I1/12

图1  吲哚-3-乙酸的合成途径
Strain/Plasmid Description Reference
E.coli TOP10 F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 recA1 araD139 Δ(ara-leu)7697 galU galK λ- rpsL(StrR) endA1 nupG Invitrogen Invitrogen
E.coli MG1655 F- λ- ilvG- rfb-50 rph-1 Invitrogen
TPA-1 E.coli TOP10 pTrc99a-iaaM-amiE This study
TPA-2 E.coli TOP10 pTrc99a-iaaM-ami1 This study
TPA-3 E.coli TOP10 pTrc99a-IAA1 This study
TPA-4 E.coli TOP10 pTrc99a-IAA2 This study
MPA-1 E.coli MG1655 pTrc99a-IAA1 This study
MPA-2 E.coli MG1655 pTrc99a-IAA2 This study
MPA-3 E.coli MG1655 ΔtnaA pTrc99a-IAA2 This study
TPTA-1 E.coli TOP10 pTrc99a-IAA3 This study
TPTA-2 E.coli TOP10 pTrc99a-IAA4 This study
MPTA-1 E.coli MG1655 pTrc99a-IAA3 This study
MPTA-2 E.coli MG1655 pTrc99a-IAA4 This study
MPTA-3 E.coli MG1655 ΔtnaA pTrc99a-IAA4 This study
pTrc99a Ptrc promoter, AmpR Invitrogen
pTrc99a-IAA1 pTrc99a-iaaM-tac-amiE This study
pTrc99a-IAA2 pTrc99a-iaaM-tac-ami1 This study
pTrc99a-IAA3 pTrc99a-tdc(cs)-tac-aoc1-tac-iad1 This study
pTrc99a-IAA4 pTrc99a-tdc(cr)-tac-aoc1-tac-iad1 This study
表1  菌株和质粒
Primers Sequence(5'-3')
iaaM-F ggaaacagaccatggaattcaaggagatgtacgatcatttcaaca
iaaM-R gatccccgggtaccgagctcttaataacgataacttgcat
V-iaaM-F atgcaagttatcgttattaagagctcggtacccgg
V-iaaM-R aaatgatcgtacatctccttgaattccatggtctgtttcctgt
amiE-F aaggatcctctagagtcgacaaggagatgcgtcacggcgatatttc
amiE-R ccgccaaaacagccaagcttttatcaggcctccttctccagtc
V-amiE-F tggagaaggaggcctgataaaagcttggctgttttggcgg
V-amiE-R gaaatatcgccgtgacgcatctccttgtcgactctagaggatcctt
ami1-F aaggatcctctagagtcgacaaggagatggcaaccaataatgattt
ami1-R ccgccaaaacagccaagcttttaaatgaatgctgccaga
V-ami1-F gtctggcagcattcatttaaaagcttggctgttttggc
V-ami1-R ttattggttgccatctccttgtcgactctagaggatcctt
tac-amiE-F aaggatcctctagagtcgaccacagctaacaccacgtcgt
tac-amiE-R tcgccgtgacgcatctccttggttaattcctcctgttacg
V-tac-amiE-F cgtaacaggaggaattaaccaaggagatgcgtcacggcga
V-tac-amiE-R acgacgtggtgttagctgtggtcgactctagaggatcctt
tac-ami1-F aaggatcctctagagtcgaccacagctaacaccacgt
tac-ami1-R ttattggttgccatctccttggttaattcctcctgttacg
V-tac-ami1-F cgtaacaggaggaattaaccaaggagatggcaaccaataa
V-tac-ami1-R acgacgtggtgttagctgtggtcgactctagaggatcctt
tdC-F gatccgaagcagcggcaaaaaggaggatggatatcgaagcatttcg
tdC-R ttgcatgcctgcaggtcgacttactgcacgtctttactaa
V-tdC-F ttagtaaagacgtgcagtaagtcgacctgcaggcatgcaa
V-tdC-R gcttcgatatccatcctcctttttgccgctgcttcggatc
aoc1-F acctgcaggcatgcaagcttaaggagatgctgccgcatccg
aoc1-R tctcatccgccaaaacagccttaaatatgggcattacgac
V-aoc1-F gtcgtaatgcccatatttaaggctgttttggcggatgaga
V-aoc1-R ggatgcggcagcatctccttaagcttgcatgcctgcaggt
iad1-F ccatatttaaggctgttttgaaggagatgccgaccctgaatctg
iad1-R gaaaatcttctctcatccgcttaaatcggtgccggct
V-iad1-F gccagccggcaccgatttaagcggatgagagaagatttt
V-iad1-R ttcagggtcggcatctccttcaaaacagccttaaatatgg
tac-aoc1-F acctgcaggcatgcaagcttcacagctaacaccacgt
tac-aoc1-R ggatgcggcagcatctccttggttaattcctcctgttacg
V- tac-aoc1-F cgtaacaggaggaattaaccaaggagatgctgccgcatcc
V- tac-aoc1-R acgacgtggtgttagctgtgaagcttgcatgcctgcaggt
tac-iad1-F ccatatttaaggctgttttgcacagctaacaccacgtcgt
tac-iad1-R ttcagggtcggcatctccttggttaattcctcctgttacg
V- tac-iad1-F cgtaacaggaggaattaaccaaggagatgccgaccctgaa
V- tac-iad1-R acgacgtggtgttagctgtgcaaaacagccttaaatatgg
tdc-F gatccgaagcagcggcaaaaaggaggatgggcagcattgatagtac
tdc-R ttgcatgcctgcaggtcgacttatgcttctttcagcagat
V- tdc-F atctgctgaaagaagcataagtcgacctgcaggcatgcaa
V- tdc-R tcaatgctgcccatcctcctttttgccgctgcttcggatc
Y-F ataatgttttttgcgccgac
Y-R atctgtatcaggctgaaaat
表2  引物序列
图2  通过吲哚-3-乙酰胺途径生成IAA
图3  通过TRP途径生成IAA
[1] Wagi S, Ahmed A. Bacillus spp.: potent microfactories of bacterial IAA. PeerJ, 2019,7:e7258.
[2] Zhao Y D. Auxin biosynthesis and its role in plant development. Annual Review of Plant Biology, 2010,61(1):49-64.
[3] Spaepen S, Vanderleyden J, Remans R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews, 2007,31(4):425-448.
doi: 10.1111/j.1574-6976.2007.00072.x pmid: 17509086
[4] Hoffman M T, Gunatilaka M K, Wijeratne K, et al. Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte. PLoS One, 2013,8(9):e73132.
pmid: 24086270
[5] Kang B R, Yang K Y, et al. Production of indole-3-acetic acid in the plant-beneficial strain Pseudomonas chlororaphis O6 is negatively regulated by the global sensor kinase GacS. Current Microbiology, 2006,52(6):473-476.
doi: 10.1007/s00284-005-0427-x pmid: 16732458
[6] Malhotra M, Srivastava S. Targeted engineering of Azospirillum brasilense SM with indole acetamide pathway for indoleacetic acid over-expression. Canadian Journal of Microbiology, 2006,52(11):1078-1084.
pmid: 17215899
[7] Shokri D, Emtiazi G. Indole-3-acetic acid (IAA) production in symbiotic and non-symbiotic nitrogen-fixing bacteria and its optimization by taguchi design. Current Microbiology, 2010,61(3):217-225.
[8] Hao X L, Xie P. Genome sequence and mutational analysis of plant-growthpromoting bacterium Agrobacterium tumefaciens CCNWGS0286 isolated from a zinc-lead mine tailing. Applied and Environmental Microbiology, 2012,78(15):5384-5394.
[9] Ghosh P K, Sen S K, Maiti T K. Production and metabolism of IAA by Enterobacter spp. (Gammaproteobacteria) isolated from root nodules of a legume Abrus precatorius L. Biocatalysis and Agricultural Biotechnology, 2015,4(3):296-303.
doi: 10.1016/j.bcab.2015.04.002
[10] Fedorov D N, Doronina N V, Trotsenko Y A. Cloning and characterization of indolepyruvate decarboxylase from Methylobacterium extorquens AM1. Biochemistry, 2010,75(12):1435-1443.
[11] Guo D Y, Kong S J, Chu X, et al. De novo biosynthesis of indole-3-acetic acid in engineered Escherichia coli. Journal of Agricultural and Food Chemistry, 2019,67(29):8186-8190.
[12] Sekine M, Watanabe K, Syono K. Molecular cloning of a gene for indole-3-acetamide hydrolase from Bradyrhizobium japonicum. Journal of Bacteriology, 1989,171(3):1718-1724.
[13] Chakraborty D, Gupta G, Kaur B. Metabolic engineering of E.coli top 10 for production of vanillin through FA catabolic pathway and bioprocess optimization using RSM. Protein Expression and Purification, 2016,128:123-133.
[14] Tsavkelova E, Oeser B, Oren-Young L, et al. Identification and functional characterization of indole-3-acetamide-mediated IAA biosynthesis in plant-associated Fusarium species. Fungal Genetics & Biology, 2012,49(1):48-57.
[15] Andrade J, Karmali A, Carrondoa M A, et al. Crystallization, diffraction data collection and preliminary crystallographic analysis of hexagonal crystals of Pseudomonas aeruginosa amidase. Acta Crystallographica, 2007,F63:214-216.
[16] Neu D, Lehmann T, Elleuche S, et al. Arabidopsis amidase 1, a member of the amidase signature family. The FEBS Journal, 2007,274(13):3440-3451.
[17] Zhu Y L, Hua Y, Zhang B, et al. Metabolic engineering of indole pyruvic acid biosynthesis in Escherichia coli with tdiD. Microbial Cell Factories, 2017, DOI: 10.1186/s12934-016-0620-6.
pmid: 33468164
[18] Basse C W, Lottspeich F, Steglich W, et al. Two potential indole-3-acetaldehyde dehydrogenases in the phytopathogenic fungus Ustilago maydis. European Journal of Biochemistry, 1996,242(3):648-656.
[19] Kalb D, Gressler J, Hoffmeister D, et al. Active-site engineering expands the substrate profile of the Basidiomycete L-tryptophan decarboxylase CsTDC. Chembiochem, 2016,17(2):132-136.
[20] W N, Mollenschott C, Berlin J.Tryptophan decarboxylase from Catharanthus roseus cell suspension cultures: purification, molecular and kinetic data of the homogenous protein. Plant Molecular Biology, 1984,3:281-288.
[21] Romasi E F, Lee J H. Development of indole-3-acetic acid-producing Escherichia coli by functional expression of IpdC, AspC, and Iad1. Journal of Microbiology and Biotechnology, 2013,23(12):1726-1736.
[22] Markus B, Christoph K, Patrick M, et al. Enhanced production of indole-3-acetic acid by a genetically modified strain of Pseudomonas fluorescens CHA0 affects root growth of cucumber, but does not improve protection of the plant against Pythium root rot. FEMS Microbiology Ecology, 1999,28(3):225-233.
[1] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[2] 何若昱,林福玉,高向东,刘金毅. 信号肽在大肠杆菌分泌系统中的研究与应用进展[J]. 中国生物工程杂志, 2021, 41(5): 87-93.
[3] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[4] 童梅,程永庆,刘金毅,徐晨. 促进大肠杆菌周质空间小分子抗体表达的菌种构建方法*[J]. 中国生物工程杂志, 2020, 40(5): 48-56.
[5] 杨丽,石晓宇,李文蕾,李剑,徐寒梅. 构建噬菌体展示抗体库过程中电穿孔法的条件优化[J]. 中国生物工程杂志, 2020, 40(4): 42-48.
[6] 乐易林,傅毓,倪黎,孙建中. 热稳定性丙酮酸:铁氧还蛋白氧化还原酶异源表达及其在乙酰辅酶A合成中的应用 *[J]. 中国生物工程杂志, 2020, 40(3): 72-78.
[7] 杭海英,刘春春,任丹丹. 流式细胞术的发展、应用及前景 *[J]. 中国生物工程杂志, 2019, 39(9): 68-83.
[8] 赵程程,孙长坡,常晓娇,伍松陵,林振泉. 大肠杆菌细胞裂解系统的构建及其在真菌毒素降解酶表达中的应用 *[J]. 中国生物工程杂志, 2019, 39(4): 69-77.
[9] 王越,李江华,堵国成,刘龙. L-氨基酸脱氨酶的分子改造及其用于全细胞催化法生产α-酮戊二酸条件的优化 *[J]. 中国生物工程杂志, 2019, 39(3): 56-64.
[10] 贺雪婷,张敏华,洪解放,马媛媛. 大肠杆菌丁醇耐受机制及耐受菌选育研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 81-87.
[11] 胡立强, 郑文, 钟艺, 杜丹, 杨浩, 龚萌. 抗病毒蛋白RC28在大肠杆菌和毕赤酵母中的表达及活性比较[J]. 中国生物工程杂志, 2017, 37(1): 14-20.
[12] 张宇萌, 童梅, 陆小冬, 米月, 莫婷, 刘金毅, 姚文兵. 大肠杆菌可溶性表达抗TNF-α Fab的工艺优化[J]. 中国生物工程杂志, 2016, 36(9): 31-37.
[13] 刘婷婷, 梁梓强, 梁士可, 郭技星, 王方海. 利用生物工程技术生产蜘蛛丝的研究进展[J]. 中国生物工程杂志, 2016, 36(5): 132-137.
[14] 张宇萌, 童梅, 陆小冬, 米月, 徐晨, 姚文兵. 提高大肠杆菌可溶性重组蛋白表达产率的研究进展[J]. 中国生物工程杂志, 2016, 36(5): 118-124.
[15] 武雪龙, 杨晓慧, 汪俊卿, 王瑞明. 蜜蜂NADPH-细胞色素P450还原酶基因在大肠杆菌中的表达及酶学特性分析[J]. 中国生物工程杂志, 2016, 36(12): 28-35.