Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (10): 10-23    DOI: 10.13523/j.cb.2006053
技术与方法     
酵母亚细胞结构分离效率评估菌株的构建 *
胡妍,李辉,何承文,朱婧,谢志平()
上海交通大学生命科学技术学院 微生物代谢国家重点实验室 上海 200240
Construction of a Yeast Strain for the Evaluation of Subcellular Fractionation
HU Yan,LI Hui,HE Cheng-wen,ZHU Jing,XIE Zhi-ping()
State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(57696 KB)   HTML
摘要:

背景: 真核细胞依赖其亚细胞结构高效地完成复杂的生化反应。尽管目前有一些亚细胞结构分离技术,但却缺乏评估这些分离技术的简单、有效方法。目的: 构建可以用来检测亚细胞结构分离效率的酿酒酵母菌株。方法: 通过传统的分子生物学与细胞生物学方法以酿酒酵母为背景构建了亚细胞结构分离效率评估菌株,并进行可行性检测。首先,将酵母各细胞器、自噬体及质膜的标记蛋白进行分组,用不同的蛋白标签分别标记每组蛋白。然后,以标记蛋白-GFP/RFP作为对照组通过免疫荧光法检测蛋白标签对标记蛋白的亚细胞定位是否有影响。最后,通过非连续性密度梯度离心验证该检测菌株能否用来检测亚细胞结构的分离效率。结果: 成功构建了酵母亚细胞结构分离效率评估菌株,该菌株标记了大多数酵母细胞亚细胞结构。挂标签的标记蛋白仍然定位在各自标记蛋白对应的亚细胞结构。非连续性密度梯度离心后,酵母各个亚细胞结构的标记蛋白均可以被检测到。结论: 该酵母亚细胞结构分离效率评估菌株是检测各亚细胞结构分离结果的方便工具,对今后酿酒酵母细胞生物学的研究有潜在的应用价值。

关键词: 酿酒酵母细胞器自噬体质膜亚细胞结构分离    
Abstract:

Background: An eukaryotic cell relies on its cellular organelles and organelles derived compartments to perform complicated biochemical reactions efficiently. One valid way to reveal the efficient cooperation between each organelle is to isolate distinct organelles. Although several techniques are developed to separate organelles, there is almost no easy method to assess the isolation process. Goal: Construct a strain of Saccharomyces cerevisiae to evaluate the efficiency of subcellular fractionation. Methods: A detection strain of Saccharomyces cerevisiae was constructed by traditional molecular biological and cell biological methods. One soluble protein and ten membrane proteins, chosen to represent subcellular compartments as well as plasma membrane, were grouped and labeled with different epitope tags in one strain. Immunofluorescence results were compared with fluorescent protein fusions to evaluate the impact of epitope tags on the localization of these proteins. Finally, density gradient centrifugation was used to illustrate the usability of the detection strain. Results: The detetion strain labeling all major subcellular compartments of Saccharomyces cerevisiae was constructed successfully. All epitope tagged organelle markers localized to the intended subcellular sites. Each compartment of Saccharomyces cerevisiae could be detected after density gradient centrifugation. Conclusion: The detection strain is a convenient tool for the evaluation of subcellular fractionation results. It is potentially useful for future research of Saccharomyces cerevisiae cell biology.

Key words: Yeast    Organelles    Autophagosome    Plasma membrane    Subcellular fractionation
收稿日期: 2020-06-28 出版日期: 2020-11-10
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(91754110);国家自然科学基金(91957104)
通讯作者: 谢志平     E-mail: zxie@sjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
胡妍
李辉
何承文
朱婧
谢志平

引用本文:

胡妍,李辉,何承文,朱婧,谢志平. 酵母亚细胞结构分离效率评估菌株的构建 *[J]. 中国生物工程杂志, 2020, 40(10): 10-23.

HU Yan,LI Hui,HE Cheng-wen,ZHU Jing,XIE Zhi-ping. Construction of a Yeast Strain for the Evaluation of Subcellular Fractionation. China Biotechnology, 2020, 40(10): 10-23.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2006053        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I10/10

标签分组 亚细胞结构 标记蛋白
FLAG Vacuole Vph1
Nucleus Nab2
Lipid droplets Erg6
MYC ER Emc1
Perioxsome Pex3
Mitochondria Cox4
V5 Late Golgi Chs5
Early Golgi Anp1
Late endosome Snf7
VSV PM Pma1
Autophagosome Atg8
表1  酿酒酵母亚细胞结构标记蛋白分组
标签分组 质粒 酶切位点 质粒 酶切位点
FLAG ClhN-pVPH1-VPH1-2FLAG-URA BspEⅠ ClhN-pVPH1-VPH1-mCherry-TRP Pml
ClhN-pGAL1-NAB2-2FLAG-URA HindⅢ Clhn-pNAB2-NAB2-mCherry-TRP Avr
ClhN-pERG6-ERG6-2FLAG-URA Age ClhN-pERG6-ERG6-mCherry-TRP Age
MYC ClhN-pEMC1-EMC1-4MYC-URA HindⅢ ClhN-pEMC1-EMC1-mCherry-TRP Nsi
ClhN-pPEX3-PEX3-4MYC-URA HindⅢ ClhN-pPEX3-PEX3-DuDre-TRP BsrGⅠ
ClhN-pCOX4-COX4-12MYC-URA EcoRⅠ ClhN-pCOX4-COX4-DuDre-TRP BsrGⅠ
V5 ClhN-pCHS5-CHS5-4V5-URA BstXⅠ ClhN-pCHS5-CHS5-mCherry-TRP Afl
ClhN-pANP1-ANP1-4V5-URA EcoRⅠ ClhN-pANP1-ANP1-mCherry-TRP Mfe
ClhN-pSNF7-SNF7-4V5-URA BstBⅠ ClhN-pSNF7-SNF7-mCherry-TRP Mfe
VSV ClhN-pPMA1-PMA1-3VSV-URA PflFⅡ BS-TRP-pPMA1-PMA1-GFP PflFⅡ
ClhN-pATG8-9VSV-ATG8-URA SnaBⅠ BS-TRP-pATG8-GFP-ATG8 SnaBⅠ
表2  质粒及其线性化酶切位点
大质粒 酶切位点
ClhN-UG74NAT-pVPH1-VPH1-2FLAG-pNAB2-NAB2-2FLAG-pERG6-ERG6-2FLAG EcoRⅠ
ClhN-HPH-pEMC1-EMC1-4MYC-pPEX3-PEX3-4MYC-pCOX4-COX4-12MYC BamHⅠ
ClhN-UG6K-pCHS5-CHS5-4V5-pANP1-ANP1-4V5-pSNF7-SNF7-4V5 BsrGⅠ
ClhN-pATG8-9VSV-ATG8-pPMA1-PMA1-3VSV-URA PflFⅡ
表3  大质粒及其线性化酶切位点
菌株编号 基因型
YOT001 TN124 pVPH1VPH1-2FLAG-URA
YOT002 TN124 pNAB2NAB2-2FLAG-URA
YOT003 TN124 pERG6ERG6-2FLAG-URA
YOT004 TN124 pEMC1EMC1-4MYC-URA
YOT005 TN124 pPEX3PEX3-4MYC-URA
YOT006 TN124 pCOX4COX4-12MYC-URA
YOT007 TN124 pCHS5CHS5-4V5-URA
YOT008 TN124 pANP1ANP1-4V5-URA
YOT009 TN124 pSNF7SNF7-4V5-URA
YOT010 TN124 pPMA1PMA1-3VSV-URA
YOT011 TN124 pATG8∷9VSV-ATG8-URA
YOT012 YOT001 pVPH1VPH1-mCherry-TRP
YOT013 YOT002 pNAB2NAB2-mCherry-TRP
YOT014 YOT003 pERG6ERG6-mCherry-TRP
YOT015 YOT004 pEMC1EMC1-mCherry-TRP
YOT016 YOT005 pPEX3PEX3-DuDre-TRP
菌株编号 基因型
YOT017 YOT006 pCOX4COX4-DuDre-TRP
YOT018 YOT007 pCHS5CHS5-mCherry-TRP
YOT019 YOT008 pANP1ANP1-mCherry-TRP
YOT020 YOT009 pSNF7SNF7-mCherry-TRP
YOT021 YOT010 pPMA1PMA1-GFP-TRP
YOT022 YOT011 pATG8∷GFP-ATG8-TRP
YOT023 TN124 pVPH1VPH1-2FLAG-pNAB2-NAB2-2FLAG-pERG6-ERG6-2FLAG-NAT
YOT024 YOT023 pCHS5CHS5-4V5-pANP1-ANP1-4V5-pSNF7-SNF7-4V5-UG6K
YOT025 YOT024 pEMC1EMC1-4MYC-pPEX3-PEX3-4MYC-pCOX4-COX4-12MYC-HYG
YOT027 YOT025 pATG8∷pPMA1-PMA1-3VSV-9VSV-ATG8-URA
YOT028 TN124 pATG8GFP-ATG8-URA
YOT029 TN124 pPMA1PMA1-GFP-TRP
YOT030 TN124 pPEX1PEX1-GFP-URA
YZM458 TN124 pVPH1VPH1-2GFP-URA
YZM018 TN124 pNAB2NAB2-GFP-URA
YZM030 TN124 pERG6ERG6-GFP-URA
YZM021 TN124 pEMC1EMC1-GFP-URA
YZM456 TN124 pCOX4COX4-GFP-URA
YZM005 TN124 pCHS5CHS5-GFP-URA
YZM452 TN124 pANP1ANP1-GFP-URA
YZM008 TN124 pSNF7SNF7-GFP-URA
表4  菌株列表
图1  YOT027 Western blot检测结果图
图2  免疫荧光与荧光蛋白共定位图
图3  免疫荧光条件测试
图4  YOT027密度梯度离心结果图
[1] Wang Y, Lilley K S, Oliver S G, et al. A protocol for the subcellular fractionation of Saccharomyces cerevisiae using nitrogen cavitation and density gradient centrifugation. Yeast, 2014,31(4):127-135.
doi: 10.1002/yea.3002 pmid: 24510422
[2] Stephanie E D, Scott D E, et al. Isolation of subcellular fractions from the yeast Saccharomyces cerevisiae. Current Protocols in Cell Biology, 2000,3(8):1-68.
[3] Day K J, J C Casler, B S Glick, et al. Budding yeast has a minimal endomembrane system. Dev Cell, 2018,44(1):56-72 e54.
doi: 10.1016/j.devcel.2017.12.014 pmid: 29316441
[4] Barlowe C K, Miller E A. Secretory protein biogenesis and traffic in the early secretory pathway. Genetics, 2013,193(2):383-410.
doi: 10.1534/genetics.112.142810 pmid: 23396477
[5] Gia K V, Melissa M R, Tom A R. Structural organization of the endoplasmic reticulum. EMBO Reports, 2002,3(10):944-950.
doi: 10.1093/embo-reports/kvf202 pmid: 12370207
[6] Chen S L, Novick P, Ferro-Novick S. ER structure and function. Curr Opin Cell Biol, 2013,25(4):428-433.
doi: 10.1016/j.ceb.2013.02.006 pmid: 23478217
[7] Preuss D, Mulholland J, Franzusoff A, et al. Characterization of the Saccharomyces Golgi complex through the cell cycle by immunoelectron microscopy. Mol Biol Cell, 1992,3:789-803.
doi: 10.1091/mbc.3.7.789 pmid: 1381247
[8] Losev E, Reinke C A, Jellen J, et al. Golgi maturation visualized in living yeast. Nature, 2006,441:1002-1006.
doi: 10.1038/nature04717 pmid: 16699524
[9] Hugh R B Pelham. Insights from yeast endosomes. Current Opinion in Cell Biology, 2002,14:454-462.
doi: 10.1016/s0955-0674(02)00352-6 pmid: 12383796
[10] Weisman L S. Yeast vacuole inheritance and dynamics. Annu Rev Gene, 2003,37:435-460.
[11] Daniel J K, Paul K H, Scott D. Emr. The fungal vacuole: composition, function, and biogenesis. Microbiological Reviews, 1990,54(3):266-292.
pmid: 2215422
[12] Joshi A S, B Nebenfuehr, V Choudhary, et al. Lipid droplet and peroxisome biogenesis occur at the same ER subdomains. Nat Commun, 2018,9(1):2940.
doi: 10.1038/s41467-018-05277-3 pmid: 30054481
[13] Wang C W. Lipid droplet dynamics in budding yeast. Cell Mol Life Sci, 2015,72(14):2677-2695.
doi: 10.1007/s00018-015-1903-5 pmid: 25894691
[14] Yuan W, M Veenhuis, I J van der Klei. The birth of yeast peroxisomes. Biochim Biophys Acta, 2016,1863(5):902-910.
pmid: 26367802
[15] Lazarow P B, Fujiki Y. Biogenesis of peroxisomes. Ann Rev Cell Bioi, 1985,1:489-530.
[16] Tabak H F, I Braakman, A vander Zand. Peroxisome formation and maintenance are dependent on the endoplasmic reticulum. Annu Rev Biochem, 2013,82:723-744.
pmid: 23414306
[17] Angela T, Susan M G. Structure and function in the budding yeast nucleus. Genetics, 2012,192:107-129.
doi: 10.1534/genetics.112.140608 pmid: 22964839
[18] Taddei A, H Schober, S M Gasser. The budding yeast nucleus. Cold Spring Harbor Perspectives in Biology, 2010,2(8):a000612.
doi: 10.1101/cshperspect.a000612 pmid: 20554704
[19] Malina C, Larsson C, Nielsen J. Yeast mitochondria: an overview of mitochondrial biology and the potential of mitochondrial systems biology. FEMS Yeast Res, 2018,18(5).
doi: 10.1093/femsyr/foy021 pmid: 29518226
[20] Xie Z P, Daniel J K. Autophagosome formation: core machinery and adaptations. Nature Cell Biology, 2007,9(10):1102-1109.
doi: 10.1038/ncb1007-1102 pmid: 17909521
[21] Aguado C, E Perez-Jimenez, M Lahuerta, et al. Isolation of lysosomes from mammalian tissues and cultured cells. Methods Mol Biol, 2016,1449:299-311.
doi: 10.1007/978-1-4939-3756-1_19 pmid: 27613045
[22] Manner A, M Islinger. Isolation of peroxisomes from rat liver and cultured hepatoma cells by density gradient centrifugation. Methods Mol Bio, 2017,1595:1-11.
[23] Huber L A, K Pfaller, I Vietor. Organelle proteomics: implications for subcellular fractionation in proteomics. Circ Res, 2003,92(9):962-968.
doi: 10.1161/01.RES.0000071748.48338.25 pmid: 12750306
[24] E Rieder, Scott D E. Overview of subcellular fractionation procedures for the yeast Saccharomyces cerevisiae. Current Protocols in Cell Biology, 2000,3(7):1-25.
[25] De Duve C. Exploring cells with a centrifuge. Nobel Lecture, 1974.
[26] Meselson M, Stahl F W, Vinograd J. Proc. Nal. Acad. Sci. U. S, 1957,43:581.
[27] Luis S M, Mercedes G De Veca, Maria Colombo, et al. Effect of pH and ATP on the equilibrium density of lysosomes. Journal of Cellular Physiology, 1993,156:303-310.
doi: 10.1002/jcp.1041560212 pmid: 8344987
[28] G Eric Schaller. Isolation of plant organelles and structures: methods and protocols. Methods in Molecular Biology, 2017,1511:119-129.
doi: 10.1007/978-1-4939-6533-5_10 pmid: 27730607
[29] Uwe Michelsen, Jörg von Hagen. Isolation of subcellular organelles and structures. Methods in Enzymology, 2009,463:305-329.
doi: 10.1016/S0076-6879(09)63019-6 pmid: 19892179
[30] Anderson N G. An introduction to particle separations in zonal centrifuges. Natl Cancer Inst Monogr, 1996,21:9-39.
pmid: 5926674
[31] Nirmal S B, R Victor Rebois. Rate zonal sedimentation of proteins in one hour or less. Analytical Biochemistry, 1997,251:103-109.
doi: 10.1006/abio.1997.2255 pmid: 9300089
[32] Wilson M A, Cascarano J. Biochemical heterogeneity of rat liver mitochondria separated by rate zonal centrifugation. Biochem, 1972, J 129: 209-218.
[33] Earle S, Gel F. Methods in Enzymology, 1990,182:317-328.
doi: 10.1016/0076-6879(90)82027-y pmid: 2314245
[34] Albert P K, T Page Owen, et al. Organelle isolation by magnetic immunoabsorption. BioTechniques, 1999,26(2):336-343.
doi: 10.2144/99262rr04 pmid: 10023546
[35] Takeshi N, Akira M, Yoh W, et al. Novel system for monitoring autophagy in the yeast Saccharomyces cerevisiae. Biochemical and Biophysical Research Communication, 1995,10(1):126-132.
[36] Im K, Mareninov S, Diaz M F P, et al. An introduction to performing immunofluorescence staining. Methods Mol Biol, 2019,1897:299-311.
doi: 10.1007/978-1-4939-8935-5_26 pmid: 30539454
[38] Zhu J, Zhang Z T, Tang S W, et al. A validated set of fluorescent-protein-based markers for major organelles in yeast (Saccharomyces cerevisiae). Molecular Biology and Physiology, 2019,10(5):e01691-19.
[39] Stadler C, Rexhepaj E, Singan V R, et al. Immunofluorescence and fluorescent protein tagging show high correlation for protein localization in mammalian cells. Nat Methods, 2013,10:315-323.
doi: 10.1038/nmeth.2377 pmid: 23435261
[40] Johnson M, Flick J S, Pexton T. Multiple mechanisms providerapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae. Mol. Cell. Biol, 1994,14:3834-3841.
doi: 10.1128/mcb.14.6.3834 pmid: 8196626
[41] Margarita C, Christian U. Purification and in vitro analysis of yeast vacuoles. Methods in Enzymology, 2008,451:177-196.
doi: 10.1016/S0076-6879(08)03213-8 pmid: 19185721
[42] Jaana M, Alex M, Paul D. Isolation of cellular lipid droplets: two purification techniques starting from yeast cells and human placentas. Journal of Visualized Experiments, 2014,86(e50981):1-10.
[43] Ben D, Astrid K. Purification of Yeast Peroxisomes, 2006,313:21-26.
[44] Istvan R B, Liza A P. Purification and subfractionation of mitochondria from the yeast Saccharomyces cerevisiae. Methods in Cell Biology, 2007,80:45-64.
doi: 10.1016/S0091-679X(06)80002-6 pmid: 17445688
[45] Birgit S K, Rainer F, Fabienne C, et al. Partial purification and characterization of early and late endosomes from yeast. The Journal of Biological Chemistry, 1993,268(19):14376-14386.
pmid: 8314797
[46] Yu Chen Lee, Martina S G, Djuro J, et al. Plasma membrane isolation using immobilized concanavalin a magnetic beads. Liver Proteomics: Methods and Protocols, Methods in Molecular Biology, 2012,909:29-41.
doi: 10.1007/978-1-61779-959-4_3 pmid: 22903707
[47] Levental K R, Levental I. Isolation of giant plasma membrane vesicles for evaluation of plasma membrane structure and protein partitioning. Methods in Membrane Lipids, Methods in Molecular Biology, 2015,1232:65-77.
[48] Chihiro T, Yuko I A, Yuji Moriyasu. Isolation of autolysosomes from tobacco BY-2 cells. Methods in Molecular Biology, 2017,1511:151-161.
doi: 10.1007/978-1-4939-6533-5_12 pmid: 27730609
[49] Ja Yeon Kim, Wang L Y, Lee Jiyoung, et al. Hepatitis c virus induces the localization of lipid rafts to autophagosomes for its RNA replication. Journal of Virology, 2017,91(20):e00541-17.
doi: 10.1128/JVI.00541-17 pmid: 28747506
[50] G Eric Schaller. Isolation of endoplasmic reticulum and its membrane. Methods in Molecular Biology, 2017,1511:119-129.
doi: 10.1007/978-1-4939-6533-5_10 pmid: 27730607
[51] Harriet T P, Katy C, Bernhard K, et al. Isolation and proteomic characterization of the arabidopsis Golgi defines functional and novel components involved in plant cell wall biosynthesis. Plant Physiology, 2012,159:12-26.
pmid: 22430844
[1] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[2] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.
[3] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[4] 岑黔鸿,高彤,任怡,雷涵. 重组酿酒酵母表达幽门螺杆菌VacA蛋白及其免疫原性分析*[J]. 中国生物工程杂志, 2020, 40(5): 15-21.
[5] 王柯茹,朱鸿亮. 植物细胞器RNA编辑因子的功能及其作用机制 *[J]. 中国生物工程杂志, 2020, 40(3): 125-131.
[6] 章小毛,郭敬涵,洪解放,陆海燕,丁娟娟,邹少兰,范寰. UPRE-lac Z为报告基因评价酵母UPR响应初步研究 *[J]. 中国生物工程杂志, 2020, 40(10): 1-9.
[7] 张正坦,朱婧,谢志平. 酿酒酵母全基因组SNARE蛋白的亚细胞定位研究 *[J]. 中国生物工程杂志, 2019, 39(10): 44-57.
[8] 陆海燕,李佳蔓,孙思凡,章小毛,丁娟娟,邹少兰. CRISPR - Cas9系统介导的工业酵母营养缺陷型菌株构建 *[J]. 中国生物工程杂志, 2019, 39(10): 67-74.
[9] 黄俊,吴仁智,陆琦,芦志龙. 酿酒酵母木糖转运基因研究进展 *[J]. 中国生物工程杂志, 2018, 38(2): 109-115.
[10] 张伟, 刘夺, 李炳志, 元英进. 产对香豆酸酿酒酵母菌株的构建及优化[J]. 中国生物工程杂志, 2017, 37(9): 89-97.
[11] 李博, 梁楠, 刘夺, 刘宏, 王颖, 肖文海, 姚明东, 元英进. 合成8二甲基异戊烯基柚皮素的人工酿酒酵母菌株构建[J]. 中国生物工程杂志, 2017, 37(9): 71-81.
[12] 郗欣彤,毛绍名. 褐藻制备生物乙醇的生产优化研究 *[J]. 中国生物工程杂志, 2017, 37(12): 111-118.
[13] 张璟, 张文强, 秦慧民, 毛淑红, 薛家禄, 路福平. 胆固醇7,8位脱氢酶的表达及催化活性研究[J]. 中国生物工程杂志, 2017, 37(1): 21-26.
[14] 梅雪昂, 陈艳, 王瑞钊, 肖文海, 王颖, 李霞, 元英进. 产玉米黄质的人工酵母细胞的构建[J]. 中国生物工程杂志, 2016, 36(8): 64-72.
[15] 王瑞钊, 潘才惠, 王颖, 肖文海, 元英进. 高产β-胡萝卜素酿酒酵母菌株的设计与构建[J]. 中国生物工程杂志, 2016, 36(7): 83-91.