Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (7): 70-81    DOI: 10.13523/j.cb.1912042
综述     
药物输送系统中Janus纳米粒子的制备及应用 *
杨威1,2,宋方祥3,王帅1,2,张黎3,王红霞3,李焱1,2,**()
1 贵州大学药学院 贵阳 550025
2 贵州省药物合成重点实验室 贵阳 550025
3 贵州大学化学与化工学院 贵阳 550025
Preparation and Application of Janus Nanoparticles in Drug Delivery System
YANG Wei1,2,SONG Fang-xiang3,WANG Shuai1,2,ZHANG Li3,WANG Hong-xia3,LI Yan1,2,**()
1 School of Pharmacy,Guizhou University, Guiyang 550025, China
2 Key Laboratory of Pharmaceutical Synthesis,Guizhou University, Guiyang 550025, China
3 School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
 全文: PDF(2250 KB)   HTML
摘要:

Janus纳米粒子(Janus nanoparticle,JNP)用于描述由两个不同侧面组合而成的一种异质结构的实体材料。Janus纳米粒子每个侧面在化学性质和/或极性上都有所差异,可将不同材料的特征和功能结合在一起,这是同类均质的材料难以实现的。近年来,Janus纳米粒子的制备方法已取得了重大突破,但其应用的发展方向仍然是一个充满挑战的领域,其中在抗肿瘤药物输送系统领域的研究较为突出。主要介绍了在药物输送系统中Janus纳米粒子的制备方法及应用,并提出了研究前景和可能面临的挑战。

关键词: Janus纳米粒子制备抗肿瘤药物输送    
Abstract:

Janus nanoparticles (JNPs) are used to describe a heterogeneous solid material composed of two different sides. Each side of JNPs is different in chemical nature and/or polarity, and can combine the characteristics and functions of different materials, which is difficult to achieve with homogeneous materials of the same kind. In recent years, major breakthroughs have been made in the preparation of JNPs, but the development direction of its application is still a challenging field, among which the research in the field of antitumor drug delivery systems is more prominent. The preparation method and application of Janus nanoparticles in drug delivery system, and puts forward the research prospects and possible challenges were mainly introduced.

Key words: Janus nanoparticles    Preparation    Anti-tumor    Drug delivery
收稿日期: 2019-12-23 出版日期: 2020-08-13
ZTFLH:  TB34  
基金资助: * 贵州省科学技术基金资助项目(黔科合基础[2020]1Y090)
通讯作者: 李焱     E-mail: yanli@gzu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨威
宋方祥
王帅
张黎
王红霞
李焱

引用本文:

杨威,宋方祥,王帅,张黎,王红霞,李焱. 药物输送系统中Janus纳米粒子的制备及应用 *[J]. 中国生物工程杂志, 2020, 40(7): 70-81.

YANG Wei,SONG Fang-xiang,WANG Shuai,ZHANG Li,WANG Hong-xia,LI Yan. Preparation and Application of Janus Nanoparticles in Drug Delivery System. China Biotechnology, 2020, 40(7): 70-81.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.1912042        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I7/70

图1  不同类型的Janus纳米粒子 [14]
图2  双靶向MSN的作用机制:细胞靶向和线粒体靶向[37]
图3  SPIONs作为靶向给药系统的多功能JNPs的制备[39]
图4  AuNC/Fe(OH)3-PAA JNPs的制备、改性及应用原理[40]
图5  叶酸靶向的Janus纳米粒子,具有ICG和银离子在近红外辐照下的释放行为,用于肝癌协同化疗/光热治疗[43]
图6  枇杷状Janus药物递送系统[47]
图7  Janus AuNSt-MSNP的纳米器件N1和通过2-硝基苄基衍生物5的光解离的NIR光触发药物递送机制[51]
图8  雪人状Janus纳米粒子的制备过程
图9  Au@Ag纳米棒@ZIF-8纳米颗粒(NPs)的合成路线及应用[64]
图10  采用各向异性诱导生长法合成Janus介孔二氧化硅纳米复合材料[65]
Type Composition Morphology Fabrication method Loading capacity Cell viability Ref.
Single structure JNPs FA-MSN-TPP Sphere Modified Sto?bermethod TOP, 5 wt% LNCaP, 45%(100μg/ml) [37]
DOX-PCL-SPION-sPEG-FA Sphere Pickering emulsion technique. - Rat C6 Glioma Cell Line, 50%
(100μg/ml)
[39]
Composite structure JNPs PCL-AuNC/Fe(OH)3-PAA Cage+Sphere Surface nucleation and seeded growth DOX, 20 wt% Dtxl, 5 wt% HepG-2, 20% (6.25μg/ml) [40]
FA-JNPs@ICG Rod Modified sol-gel method ICG, 4.9 wt% SMMC-7721, 30% (100μg/ml) [43]
JGSMD Loquat Seeded growth DOX, 7.71 wt% - [47]
AuNSt-MSNP Star-Sphere Seeded growth DOX, 9.5 wt% HeLa, 70%(100μg/ml) [51]
FA-PEG-Au/Fe3O4@C Snowman Surface nucleation and seeded growth DOX, 42.9 wt% HeLa, 10%(50μg/ml) [57]
Au@Ag nanorod@ZIF-8 Rod Seeded growth DOX, 37.62 wt% HeLa, 65%(250μg/ml) [64]
UCNP@SiO2@mSiO2&PMO Cube+Sphere Surface nucleation and seeded growth DOX, 5.4 wt% PTX, 6.6 wt% HeLa,50%(50μg/ml) [65]
表1  不同类型药物输送Janus纳米粒子的组成、形貌、制备方法、载药率及对肿瘤细胞活性的分析
[1] He Q J, Shi J L. MSN anti-cancer nanomedicines: chemotherapy enhancement, overcoming of drug resistance, and metastasis inhibition. Advanced Materials, 2014,26(3):391-411.
doi: 10.1002/adma.201303123 pmid: 24142549
[2] Gao H L, Qian J, Cao S J, et al. Precise glioma targeting of and penetration by aptamer and peptide dual-functioned nanoparticles. Biomaterials, 2012,33(20):5115-5123.
doi: 10.1016/j.biomaterials.2012.03.058
[3] Liong M, Lu J, Kovochich M, et al. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano, 2008,2(5):889-896.
doi: 10.1021/nn800072t pmid: 19206485
[4] Chen W S, Huang Q Y, Ou W Z, et al. Self-reporting liposomes for intracellular drug release. Small, 2014,10(7):1261-1265.
doi: 10.1002/smll.201302698
[5] Zhang T, Liu H, Li Y T, et al. A pH-sensitive nanotherapeutic system based on a marine sulfated polysaccharide for the treatment of metastatic breast cancer through combining chemotherapy and COX-2 inhibition. Acta Biomaterialia, 2019,99:412-425. DOI: 10.1016/j.actbio.2019.09.001.
doi: 10.1016/j.actbio.2019.09.001 pmid: 31494294
[6] Zhang W J, Wang F H, Wang Y, et al. pH and near-infrared light dual-stimuli responsive drug delivery using DNA-conjugated gold nanorods for effective treatment of multidrug resistant cancer cells. Journal of Controlled Release, 2016,232(28):9-19.
doi: 10.1016/j.jconrel.2016.04.001
[7] Hervault A, Dunn A E, Lim M, et al. Doxorubicin loaded dual pH- and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications. Nanoscale, 2016,8(24):12152-12161.
doi: 10.1039/c5nr07773g pmid: 26892588
[8] Liang X L, Gao J, Jiang L D, et al. Nanohybrid liposomal cerasomes with good physiological stability and rapid temperature responsiveness for high intensity focused ultrasound triggered local chemotherapy of cancer. ACS Nano, 2015,9(2):1280-1293.
doi: 10.1021/nn507482w pmid: 25599568
[9] de Gennes P G. Soft matter. Science, 1992,256(5056):495-497.
doi: 10.1126/science.256.5056.495 pmid: 17787946
[10] Walther A, André X, Drechsler M, et al. Janus discs. Journal of the American Chemical Society, 2007,129(19):6187-6198.
doi: 10.1021/ja068153v pmid: 17441717
[11] Min N G, Choi T M, Kim S H. Bicolored Janus microparticles created by phase separation in emulsion drops. Macromolecular Chemistry and Physics, 2016,218(2), 1600265.
doi: 10.1002/macp.v218.2
[12] Chaturvedi N, Juluri B K, Hao Q, et al. Simple fabrication of snowman-like colloids. Journal of Colloid & Interface Science, 2012,371(1):28-33.
doi: 10.1016/j.jcis.2012.01.003 pmid: 22289257
[13] Wang Z, Chang Z, Lu M, et al. Shape-controlled magnetic mesoporous silica nanoparticles for magnetically-mediated suicide gene therapy of hepatocellular carcinoma. Biomaterials, 2018,154:147-157.DOI: 10.1016/j.biomaterials.2017.10.047.
doi: 10.1016/j.biomaterials.2017.10.047 pmid: 29128843
[14] Walther A, Müller, Axel H E. Janus particles: synthesis, self-assembly, physical properties, and applications. Chemical Reviews, 2013,113(7):5194-5261.
doi: 10.1021/cr300089t pmid: 23557169
[15] Sundararajan P, Wang J, Rosen L A, et al. Engineering polymeric Janus particles for drug delivery using microfluidic solvent dissolution approach. Chemical Engineering Science, 2018,178:199-210.DOI: 10.1016/j.ces.2017.12.013.
doi: 10.1016/j.ces.2017.12.013
[16] Ruhland T M, Gr?schel A H, Walther A, et al. Janus cylinders at liquid-liquid interfaces. Langmuir, 2011,27(16):9807-9814.
doi: 10.1021/la201863x pmid: 21755956
[17] Das S K, Mandal S S, Bhattacharyya A J. Ionic conductivity, mechanical strength and Li-ion battery performance of mono-functional and bi-functional (“Janus”) “soggy sand” electrolytes. Energy & Environmental Science, 2011,4(4):1391-1399.
[18] Zhang L, Li S, Chen X, et al. Tailored surfaces on 2D material: UFO-like cyclodextrin-Pd nanosheet/metal organic framework Janus nanoparticles for synergistic cancer therapy. Advanced Functional Materials, 2018,28(51):1803815.
[19] Xu C, Wang B, Sun S. Dumbbell-like Au-Fe3O4 nanoparticles for target-specific platin delivery. Journal of the American Chemical Society, 2009,131(12):4216-4217.
doi: 10.1021/ja900790v pmid: 19275156
[20] Xu C, Sun S. New forms of superparamagnetic nanoparticles for biomedical applications. Advanced Drug Delivery Reviews, 2013,65(5):732-743.
doi: 10.1016/j.addr.2012.10.008 pmid: 23123295
[21] Zhang L Y, Chen Y Y, Li Z L, et al. Tailored synthesis of octopus-type Janus nanoparticles for synergistic actively-targeted and chemo-photothermal therapy. Angewandte Chemie, 2016,128(5):2158-2161.
[22] Shao D, Li J, Zheng X, et al. Janus “nano-bullets” for magnetic targeting liver cancer chemotherapy. Biomaterials, 2016,100:118-133.DOI: 10.1016/j.biomaterials.2016.05.030.
doi: 10.1016/j.biomaterials.2016.05.030 pmid: 27258482
[23] Fang L, Wang W, Liu Y, et al. Janus nanostructures formed by mesoporous silica coating Au nanorods for near-infrared chemo-photothermal therapy. J Mater Chem B, 2017,44(5):8833-8838.
[24] Shao D, Zhang X, Liu W L, et al. Janus silver-mesoporous silica nanocarriers for SERS traceable and pH-sensitive drug delivery in cancer therapy. ACS Applied Materials & Interfaces, 2016,8(7):4303-4308.
doi: 10.1021/acsami.5b11310 pmid: 26844695
[25] Wang Y M, Ji X, Pang P, et al. Synthesis of Janus Au nanorods/polydivinylbenzene hybrid nanoparticles for chemo-photothermal therapy. Journal of Materials Chemistry B, 2018,6(16):2481-2488.
doi: 10.1039/c8tb00233a pmid: 32254465
[26] Yuan H, Ma Q M, Song Y, et al. Phase-Separation-induced formation of Janus droplets based on aqueous two-phase systems. Macromolecular Chemistry and Physics, 2017,218(2):1600422.
[27] Yabu H, Ohshima H, Saito Y. Double-phase-functionalized magnetic Janus polymer microparticles containing TiO2 and Fe2O3 nanoparticles encapsulated in mussel-inspired amphiphilic polymers. Acs Applied Materials & Interfaces, 2014,6(20):18122-18128.
doi: 10.1021/am506530s pmid: 25265162
[28] Hu S H, Gao X. Nanocomposites with spatially separated functionalities for combined imaging and magnetolytic therapy. Journal of the American Chemical Society, 2010,132(21):7234-7237.
doi: 10.1021/ja102489q pmid: 20459132
[29] Hu S H, Chen S Y, Gao X. Multifunctional nanocapsules for simultaneous encapsulation of hydrophilic and hydrophobic compounds and on-demand release. ACS Nano, 2012,6(3):2558-2565.
doi: 10.1021/nn205023w pmid: 22339040
[30] Nisisako T, Torii T, Takahashi T, et al. ynthesis of monodisperse bicolored janus particles with electrical anisotropy using a microfluidic co-flow system. Advanced Materials, 2010,18(9):1152-1156.
doi: 10.1002/(ISSN)1521-4095
[31] Xie H, She Z G, Wang S, et al. One-step fabrication of polymeric janus nanoparticles for drug delivery. Langmuir, 2012,28(9):4459-4463.
doi: 10.1021/la2042185 pmid: 22251479
[32] Chen C H, Shah R K, Abate A R, et al. Janus particles templated from double emulsion droplets generated using microfluidics. Langmuir, 2009,25(8):4320-4323.
doi: 10.1021/la900240y pmid: 19366216
[33] Wang F, Pauletti G M, Wang J, et al. Dual surface-functionalized janus nanocomposites of polystyrene/Fe3O4@SiO2 for simultaneous tumor cell targeting and stimulus-induced drug release. Advanced Materials, 2013,25(25):3485-3489.
doi: 10.1002/adma.201301376 pmid: 23681969
[34] Razavi S, Hernandez L M, Read A, et al. Surface tension anomaly observed for chemically-modified Janus particles at the air/water interface. Journal of Colloid and Interface Science, 2020,558:95-99.DOI: 10.1016/j.jcis.2019.09.084.
doi: 10.1016/j.jcis.2019.09.084 pmid: 31585226
[35] Sharifzadeh E, Salami-Kalajahi M, Hosseini M S, et al. A temperature-controlled method to produce Janus nanoparticles using high internal interface systems: Experimental and theoretical approaches. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016,506:56-62.DOI: 10.1016/j.colsurfa.2016.06.006.
doi: 10.1016/j.colsurfa.2016.06.006
[36] Wang K L, Wang G, Lu C J. Particle contact angle at the oil-water interface: Effect of surface silanization. Particuology, 2019,44:218-224.DOI: 10.1016/j.partic.2018.05.011.
doi: 10.1016/j.partic.2018.05.011
[37] López V, Villegas M R, Rodríguez V, et al. Janus mesoporous silica nanoparticles for dual-targeting for tumoral cells and mitochondria. ACS Applied Materials & Interfaces, 2017,9(32):26697-26706.
doi: 10.1021/acsami.7b06906 pmid: 28759196
[38] Kim J, Ahn S I, Kim Y T. Nanotherapeutics engineered to cross the blood-brain barrier for advanced drug delivery to the central nervous system. Journal of Industrial & Engineering Chemistry, 2019,73:8-18.DOI: 10.1016/j.jiec.2019.01.021.
doi: 10.1016/j.jiec.2019.01.021 pmid: 31588177
[39] Shaghaghi B, Khoee S, Bonakdar S. Preparation of multifunctional Janus nanoparticles on the basis of SPIONs as targeted drug delivery system. International Journal of Pharmaceutics, 2019,559:1-12.DOI: 10.1016/j.ijpharm.2019.01.020.
doi: 10.1016/j.ijpharm.2019.01.020 pmid: 30664992
[40] Zhang L Y, Zhang M J, Zhou L, et al. Dual drug delivery and sequential release by amphiphilic Janus nanoparticles for liver cancer theranostics. Biomaterials, 2018,181:113-125.
doi: 10.1016/j.biomaterials.2018.07.060 pmid: 30081302
[41] Yang K, Zhang S, Zhang G, et al. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Letters, 2010,10(9):3318-3323.
doi: 10.1021/nl100996u pmid: 20684528
[42] Chen Q, Liu X, Zeng J, et al. Albumin-NIR dye self-assembled nanoparticles for photoacoustic pH imaging and pH-responsive photothermal therapy effective for large tumors. Biomaterials, 2016,98:23-30. DOI: 10.1016/j.biomaterials.2016.04.041.
doi: 10.1016/j.biomaterials.2016.04.041 pmid: 27177219
[43] Wang Z, Chang Z, Lu M, et al. Janus silver/silica nanoplatforms for light-activated liver cancer chemo/photothermal therapy. ACS Applied Materials & Interfaces, 2017,9(36):30306-30317.
doi: 10.1021/acsami.7b06446 pmid: 28836433
[44] Cloughesy T F, Cavenee W K, Mischel P S. Glioblastoma: from molecular pathology to targeted treatment. Annual Review of Pathology Mechanisms of Disease, 2013,9:1-25.DOI: 10.1146/annurev-pathol-011110-130324.
doi: 10.1146/annurev-pathol-011110-130324
[45] Parrish K, Sarkaria J, Elmquist W. Improving drug delivery to primary and metastatic brain tumors: strategies to overcome the blood-brain barrier. Clinical Pharmacology & Therapeutics, 2015,97(4):336-346.
doi: 10.1002/cpt.71 pmid: 25669487
[46] Grabrucker A M, Ruozi B, Belletti D, et al. Nanoparticle transport across the Blood Brain Barrier. Tissue Barriers, 2016,4(1):e1153568.
doi: 10.1080/21688370.2016.1153568 pmid: 27141426
[47] Liu Y, Wei C, Huang L, et al. Loquat inspired Janus drug delivery system for flexible and robust tumor targetingtherapy. ACS Biomaterials Science & Engineering, 2019,5(2):740-747.
[48] Ibsen S, Zahavy E, Wrasdilo W, et al. A novel doxorubicin prodrug with controllable photolysis activation for cancer chemotherapy. Pharmaceutical Research, 2010,27(9):1848-1860.
doi: 10.1007/s11095-010-0183-x pmid: 20596761
[49] Bai X, Li Z, Jockusch S, et al. Photocleavage of a 2-nitrobenzyl linker bridging a fluorophore to the 5 end of DNA. Proceedings of the National Academy of Sciences, 2003,100(2):409-413.
[50] Jalani G, Naccache R, Rosenzweig D H, et al. Photocleavable hydrogel coated upconverting nanoparticles: a multifunctional theranostic platform for NIR imaging and on-demand macromolecular delivery. Journal of the American Chemical Society, 2016,138(3):1078-1083.
doi: 10.1021/jacs.5b12357 pmid: 26708288
[51] Montoto A H, Llopis-Lorente A, Gorbe M, et al. Janus gold nanostars-mesoporous silica nanoparticles for NIR light-triggered drug delivery. Chemistry A European Journal, 2019,25(36):8471-8478.
doi: 10.1002/chem.v25.36
[52] Gao H, Bi Y, Chen J, et al. Near-infrared light-triggered switchable nanoparticles for targeted chemo/photothermal cancer therapy. ACS Applied Materials & Interfaces, 2016,8(24):15103-15112.
doi: 10.1021/acsami.6b03905 pmid: 27227416
[53] Wang C, Ma X, Ye S, et al. Protamine functionalized single-walled carbon nanotubes for stem cell labeling and in vivo Raman/magnetic resonance/photoacoustic triple-modal imaging. Advanced Functional Materials, 2012,22(11):2363-2375.
[54] Zheng M, Li Y, Liu S, et al. One-pot to synthesize multifunctional carbon dots for near infrared fluorescence imaging and photothermal cancer therapy. ACS Applied Materials & Interfaces, 2016,8(36):23533-23541.
doi: 10.1021/acsami.6b07453 pmid: 27558196
[55] Wang X, Cao D, Tang X, et al. Coating carbon nanosphere with patchy gold for production of highly efficient photothermal agent. ACS Applied Materials & Interfaces, 2016,8(30):19321-19332.
doi: 10.1021/acsami.6b05550 pmid: 27351062
[56] Liu J, Wickramaratne N P, Qiao S Z, et al. Molecular-based design and emerging applications of nanoporous carbon spheres. Nature Materials, 2015,14(8):763-774.
doi: 10.1038/nmat4317 pmid: 26201892
[57] Zhang Q, Zhang L, Li S, et al. Designed synthesis of Au/Fe3O4@C Janus nanoparticles for Dualmodal imaging and actively targeted chemo-photothermal synergistic therapy of cancer cells. Chemistry, 2017,23(68):17242-17248.
doi: 10.1002/chem.201703498 pmid: 28845884
[58] Park K S, Ni Z, C?té A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci U S A, 2006,103(27):10186-10191.
doi: 10.1073/pnas.0602439103 pmid: 16798880
[59] Sun C Y, Qin C, Wang X L, et al. Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle. Dalton Transactions, 2012,41(23):6906-6909.
pmid: 22580798
[60] Shearier E, Cheng P, Zhu Z, et al. Surface defection reduces cytotoxicity of Zn(2-methylimidazole)2 (ZIF-8) without compromising its drug delivery capacity. RSC Adv, 2015,6(5):4128-4135.
doi: 10.1039/C5RA24336J pmid: 26998256
[61] Wang X, Miao D, Liang X, et al. Nanocapsules engineered from polyhedral ZIF-8 templates for bone-targeted hydrophobic drug delivery. Biomater, 2017,5(4):658-662.
[62] Chowdhuri A R, Laha D, Pal S, et al. One-pot synthesis of folic acid encapsulated upconversion nanoscale metal organic frameworks for targeting, imaging and pH responsive drug release. Dalton Transactions, 2016,45(45):18120-18132.
doi: 10.1039/c6dt03237k pmid: 27785489
[63] Villajos, J A, Orcajo G, Martos C, et al. Co/Ni mixed-metal sited MOF-74 material as hydrogen adsorbent. International Journal of Hydrogen Energy, 2015,40(15):5346-5352.
[64] Jiang P C, Hu Y L, Li G K, et al. Biocompatible Au@Ag nanorod@ZIF-8 core-shell nanoparticles for surface-enhanced Raman scattering imaging and drug delivery. Talanta, 2019,200:212-217.DOI: 10.1016/j.talanta.2019.03.057.
doi: 10.1016/j.talanta.2019.03.057 pmid: 31036175
[65] Li X, Zhou L, Wei Y, et al. Anisotropic growth-induced synthesis of dual-compartment Janus mesoporous silica nanoparticles for bimodal triggered drugs delivery. Journal of the American Chemical Society, 2014,136(42):15086-15092.
doi: 10.1021/ja508733r pmid: 25251874
[1] 邓蕊,曾佳利,卢雪梅. 基于Musca domestica cecropin的抗肿瘤小分子衍生肽筛选及构效关系解析*[J]. 中国生物工程杂志, 2021, 41(11): 14-22.
[2] 肖云喜,张俊河,杨雯雯,程洪伟. 用于疫苗生产的人二倍体细胞研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 74-81.
[3] 童梅,程永庆,刘金毅,徐晨. 促进大肠杆菌周质空间小分子抗体表达的菌种构建方法*[J]. 中国生物工程杂志, 2020, 40(5): 48-56.
[4] 陈春琳,秦松,宋宛霖,刘志丹,刘正一. 褐藻寡糖生物法制备研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 85-95.
[5] 许嘉越,李紫倩,张革. 登革病毒3'UTRΔ30系列疫苗的研究进展[J]. 中国生物工程杂志, 2019, 39(3): 97-104.
[6] 卢钟腾,呼高伟. 新型细胞穿膜肽的鉴定方法与其在抗肿瘤治疗中的应用[J]. 中国生物工程杂志, 2019, 39(12): 50-55.
[7] 李思,翟逸舟,陆玉婷,王富军,赵健. 一种用于肿瘤药物治疗的新型人源性穿膜肽的优化及其应用 *[J]. 中国生物工程杂志, 2018, 38(7): 40-49.
[8] 张莉,丁涓,郝宇晨,叶城,蒲洋. 一株海洋微藻的鉴定及其原生质体制备条件优化 *[J]. 中国生物工程杂志, 2018, 38(11): 42-50.
[9] 张杨玲,汪园,张革. 埃博拉病毒疫苗rVSV-ZEBOV的研究进展[J]. 中国生物工程杂志, 2018, 38(1): 51-56.
[10] 李敏, 吴日伟. 抗肿瘤药物市场概述[J]. 中国生物工程杂志, 2017, 37(4): 125-133.
[11] 刘立平, 张纯, 殷爽, 王祺, 张耀, 余蓉, 刘永东, 苏志国. 白蛋白结合肽-多柔比星耦合物的设计、制备、表征及初步评价[J]. 中国生物工程杂志, 2017, 37(4): 68-75.
[12] 陈坤, 曹雪玮, 张琴, 赵健, 王富军. EGF类生长因子来源的新型靶向肽在抗肿瘤药物蛋白中的应用[J]. 中国生物工程杂志, 2017, 37(3): 1-9.
[13] 陈文杰, 汪建样, 殷明, 殷嫦嫦. 人脐带间充质干细胞抗肿瘤机制的研究进展[J]. 中国生物工程杂志, 2017, 37(3): 78-82.
[14] 王佃亮. 讲座细胞药物的制备工艺——细胞药物连载之二[J]. 中国生物工程杂志, 2016, 36(7): 127-133.
[15] 钱建瑛, 许正宏, 窦文芳. 融合蛋白GGH粉针剂制备工艺研究[J]. 中国生物工程杂志, 2016, 36(11): 48-53.