Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (3): 1-8    DOI: 10.13523/j.cb.1908028
研究报告     
基于CRISPR/Cas9-SAM系统CHD5基因过表达慢病毒载体的构建及对膀胱癌T24细胞增殖,迁移和侵袭能力的影响 *
黄胜1,**,严启滔2,**,熊仕琳3,彭弈骐1,赵蕊3,***()
1 南方医科大学珠江医院 广州 510282
2 南部战区总医院 老年感染与器官功能支持重点实验室 广州 510010
3 南方医科大学基础医学院生物化学与分子生物学教研室 广州 510515
Construction of CHD5 Gene Overexpressing Lentiviral Vector Based on CRISPR/Cas9-SAM System and the Effect of CHD5 on Proliferation, Migration and Invasion in T24 Cells
HUANG Sheng1,**,YAN Qi-tao2,**,XIONG Shi-lin3,PENG Yi-qi1,ZHAO Rui3,***()
1 Zhujiang Hospital of Southern Medical University,Guangzhou 510282,China
2 General Hospital of Southern Theatre Command Key Laboratory of Geriatric Infection and Organ Function Support,Guangzhou 510010,China
3 Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University 510515,China
 全文: PDF(1678 KB)   HTML
摘要:

目的 利用CRISPR/Cas9-SAM系统构建CHD5基因过表达慢病毒载体,并分析其对膀胱癌细胞T24增殖,迁移和侵袭能力的影响.方法: 针对CHD5基因设计3个sgRNA(sgRNA-1,sgRNA-2,sgRNA-3),将sgRNA连入LV-sgRNA-MS2-P65-HSF1-Neo载体,经293T细胞包装后获得高滴度慢病毒颗粒.病毒以MOI=10感染膀胱癌细胞T24.RT-qPCR和Western blot分别检测感染病毒后T24细胞CHD5 mRNA和蛋白表达水平,CCK8实验,流式分析,划痕实验和Transwell实验检测CHD5过表达对T24细胞增殖,凋亡,迁移和侵袭能力的影响.结果: 成功构建CHD5过表达慢病毒载体.慢病毒感染T24细胞后,RT-qPCR和Western blot证实,T24细胞CHD5的mRNA和蛋白表达水平显著高于空白组和阴性对照组(P<0.05),并且sgRNA-3-MS2-P65-HSF1序列的作用最为显著.CCK8及流式分析结果显示,过表达CHD5抑制T24细胞增殖,促进凋亡,与对照组相比,均有统计学意义(P<0.001).划痕和Transwell实验结果表明,过表达CHD5可抑制T24细胞迁移和侵袭能力(P<0.01).结论: 成功构建CHD5过表达慢病毒.过表达CHD5能促进膀胱癌细胞T24凋亡,抑制其增殖,迁移和侵袭能力.

关键词: CHD5CRISPR/Cas9-SAM系统膀胱癌慢病毒    
Abstract:

Objective: To construct a CHD5 gene overexpressing lentiviral vector using CRISPR/Cas9-SAM system and analyze its effect on the proliferation, migration and invasion in bladder cancer cell line T24.Methods: Three pairs of sgRNAs (sgRNA1, sgRNA-2, sgRNA-3) were designed targeting CHD5 gene. The sgRNA was inserted into the LV-sgRNA-MS2-P65-HSF1-Neo vector, and the lentivirus particles with high titer were obtained after 293T cell packaging. Subsequently, bladder cancer cell line T24 were infected with lentivirus at MOI=10. The expression of CHD5 mRNA and protein in T24 cells was examined by RT-qPCR and Western blot, respectively. CCK8 assay, flow cytometry, wound healing and transwell assay were performed to detect the effects of overexpression of CHD5 on the proliferation, apoptosis, migration and invasion of T24 cells.Results: The CHD5 overexpressing lentiviral vector was successfully constructed. The results of RT-qPCR and Western blot confirmed that the mRNA and protein expression of CHD5 in T24 cells were significantly higher than those in the blank and negative control groups after lentivirus infection(P<0.05), and the effect of sgRNA-3-MS2-P65-HSF1 was the most significant.CCK8 and flow cytometry analysis showed that overexpression of CHD5 inhibited the proliferation and promoted apoptosis of T24 cells, which had statistical significance compared with the control group (P<0.001). Wound healing and transwell assay showed that overexpression of CHD5 inhibited the migration and invasion of T24 cells (P<0.01).Conclusion: CHD5-SAM lentivirus has been successfully constructed. Overexpression of CHD5 could induce apoptosis, inhibit proliferation, migration and invasion of bladder cancer cell line T24.

Key words: CHD5    CRISPR/Cas9-SAM system    Bladder cancer    Lentivirus
收稿日期: 2019-08-15 出版日期: 2020-04-18
ZTFLH:  Q819  
基金资助: * 广州市科技计划项目珠江科技新星专项(201610010174);国家自然科学基金面上项目(81771710);广州市科技计划项目(20170701006)
通讯作者: 赵蕊     E-mail: zhaoruiruizhao@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
黄胜
严启滔
熊仕琳
彭弈骐
赵蕊

引用本文:

黄胜, 严启滔, 熊仕琳, 彭弈骐, 赵蕊. 基于CRISPR/Cas9-SAM系统CHD5基因过表达慢病毒载体的构建及对膀胱癌T24细胞增殖,迁移和侵袭能力的影响 *[J]. 中国生物工程杂志, 2020, 40(3): 1-8.

HUANG Sheng, YAN Qi-tao, XIONG Shi-lin, PENG Yi-qi, ZHAO Rui. Construction of CHD5 Gene Overexpressing Lentiviral Vector Based on CRISPR/Cas9-SAM System and the Effect of CHD5 on Proliferation, Migration and Invasion in T24 Cells. China Biotechnology, 2020, 40(3): 1-8.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.1908028        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I3/1

sgRNA 5' STEM 3'
CHD5-sgRNA-1F CACCg CCTCGGCCGGCTGCGGGACT
CHD5-sgRNA-1R aaac AGTCCCGCAGCCGGCCGAGG c
CHD5-sgRNA-2F CACCg CGGCGGCAGCGCCAGAGGCA
CHD5-sgRNA-2R aaac TGCCTCTGGCGCTGCCGCCG c
CHD5-sgRNA-3F CACCg GCCCGGGCTTTGCGGGGAGC
CHD5-sgRNA-3R aaac GCTCCCCGCAAAGCCCGGGC c
  
Primer 序列
CHD5-F 5'-CGAAGGCTACAAGTATGAGCGG-3'
CHD5-R 5'-GGTTGAGAGGAGGAAGCAGAAC-3'
β-Actin-F 5'-CATGTACGTTGCTATCCAGGC-3'
β-Actin-R 5'-CTCCTTAATGTCACGCACGAT-3'
表2  CHD5和β-Actin RT-qPCR实验引物序列
图1  CHD5-sgRNA表达载体测序结果
图2  SAM双载体病毒感染T24细胞后CHD5的表达水平
图3  CCK检测细胞增殖能力
图4  过表达CHD5对细胞周期和凋亡的影响
图5  CHD5对T24细胞迁移和侵袭能力的影响(×100)
[1] Thompson P M, Gotoh T, Kok M , et al. CHD5, a new member of the chromodomain gene family, is preferentially expressed in the nervous system. Oncogene, 2003,22(7):1002-1011.
[2] Marfella C G, Imbalzano A N . The Chd family of chromatin remodelers. Mutat Res, 2007,618(1-2):30-40.
[3] Stanley F K, Moore S, Goodarzi A A . CHD chromatin remodelling enzymes and the DNA damage response. Mutat Res, 2013,750(1-2):31-44.
[4] Oliver S S, Musselman C A, Srinivasan R , et al. Multivalent recognition of histone tails by the PHD fingers of CHD5. Biochemistry, 2012,51(33):6534-6544.
[5] Paul S, Kuo A, Schalch T , et al. Chd5 requires PHD-mediated histone 3 binding for tumor suppression. Cell Rep, 2013,3(1):92-102.
[6] Okawa E R, Gotoh T, Manne J , et al. Expression and sequence analysis of candidates for the 1p36.31 tumor suppressor gene deleted in neuroblastomas. Oncogene, 2008,27(6):803-810.
[7] Koyama H, Zhuang T, Light J E , et al. Mechanisms of CHD5 Inactivation in neuroblastomas. Clin Cancer Res, 2012,18(6):1588-1597.
[8] Wang L, He S, Tu Y , et al. Downregulation of chromatin remodeling factor CHD5 is associated with a poor prognosis in human glioma. J Clin Neurosci, 2013,20(7):958-963.
[9] Wang X, Lau K K, So L K , et al. CHD5 is down-regulated through promoter hypermethylation in gastric cancer. J Biomed Sci, 2009,16:95.
[10] Liu J B, Zhou Q B, Xu J Z , et al. Influence of colorectal cancer tumor suppressor gene CHD5 methylation on its clinical and pathological characteristics. J Biol Regul Homeost Agents, 2015,29(4):889-893.
[11] Wu X, Zhu Z, Li W , et al. Chromodomain helicase DNA binding protein 5 plays a tumor suppressor role in human breast cancer. Breast Cancer Res, 2012,14(3):R73.
[12] Zhao R, Yan Q, Lv J , et al. CHD5, a tumor suppressor that is epigenetically silenced in lung cancer. Lung Cancer, 2012,76(3):324-331.
[13] Wong R R, Chan L K, Tsang T P , et al. CHD5 downregulation associated with poor prognosis in epithelial ovarian cancer. Gynecol Obstet Invest, 2011,72(3):203-207.
[14] Zhao R, Meng F, Wang N , et al. Silencing of CHD5 gene by promoter methylation in leukemia. PLoS One, 2014,9(1):e85172.
[15] Konermann S, Brigham M D, Trevino A E , et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature, 2015,517(7536):583-588.
[16] Antoni S, Ferlay J, Soerjomataram I , et al. Bladder cancer incidence and mortality: a global overview and recent trends. Eur Urol, 2017,71(1):96-108.
[17] Bray F, Ferlay J, Soerjomataram I , et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018,68(6):394-424.
[18] van Rhijn B W, Burger M, Lotan Y , et al. Recurrence and progression of disease in non-muscle-invasive bladder cancer: from epidemiology to treatment strategy. Eur Urol, 2009,56(3):430-442.
[19] Guillaume L, Guy L . Epidemiology of and risk factors for bladder cancerand for urothelial tumors. Rev Prat, 2014, 64(10):1372-1374,1378-1380.
[20] Dy G W, Gore J L, Forouzanfar M H , et al. Global Burden of Urologic Cancers, 1990-2013. Eur Urol, 2017,71(3):437-446.
[21] Soloway M S . Bladder cancer: Lack of progress in bladder cancer--what are the obstacles. Nat Rev Urol, 2013,10(1):5-6.
[22] Bagchi A, Mills A A . The quest for the 1p36 tumor suppressor. Cancer Res, 2008,68(8):2551-2556.
[23] Bagchi A, Papazoglu C, Wu Y , et al. CHD5 is a tumor suppressor at human 1p36. Cell, 2007,128(3):459-475.
[24] Joung J, Engreitz J M, Konermann S , et al. Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood. Nature, 2017,548(7667):343-346.
[25] Chavez A, Scheiman J, Vora S , et al. Highly efficient Cas9-mediated transcriptional programming. Nat Methods, 2015,12(4):326-328.
[26] Joung J, Konermann S, Gootenberg J S , et al. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat Protoc, 2017,12(4):828-863.
[1] 赵晓煜,徐祺玲,赵晓东,安云飞. 基因治疗慢病毒载体的转导增强策略*[J]. 中国生物工程杂志, 2021, 41(8): 52-58.
[2] 钱昱,丁晓雨,刘志强,袁增强. 基因修饰人多能干细胞的高效单克隆建系方法[J]. 中国生物工程杂志, 2021, 41(8): 33-41.
[3] 菅璐,黄映辉,梁天亚,王利敏,马洪涛,张婷,李丹阳,王明连. 利用CRISPR/Cas9技术建立敲除JAK2基因K562细胞系 *[J]. 中国生物工程杂志, 2019, 39(7): 39-47.
[4] 马占兵,党洁,杨继辉,霍正浩,徐广贤. 基于慢病毒系统的双荧光标记多功能自噬流监测系统建立与应用 *[J]. 中国生物工程杂志, 2019, 39(5): 88-95.
[5] 韩亚丽,杨冠恒,陈雁雯,龚秀丽,张敬之. 表达β-珠蛋白基因的安全性慢病毒载体的优化 *[J]. 中国生物工程杂志, 2018, 38(7): 50-57.
[6] 苟理尧,刘梦瑶,夏菁,万群,孙恃雷,唐敏,张彦. 骨形成蛋白9对人膀胱癌BIU-87细胞增殖和迁移的影响[J]. 中国生物工程杂志, 2018, 38(5): 10-16.
[7] 郝燕妮,李婷,范佳鑫,李罗,牛凌芳,欧俐苹,吴小候,罗春丽. shPLCε通过下调CDC25A抑制T24细胞的瓦伯格效应 *[J]. 中国生物工程杂志, 2018, 38(5): 33-39.
[8] 赵燕, 郝燕妮, 刘南京, 李婷, 吴小候, 罗春丽. miR-145通过下调PLCε抑制膀胱癌EMT和迁移及其机制研究[J]. 中国生物工程杂志, 2017, 37(3): 27-36.
[9] 代玉环, 徐尧, 罗颖, 代洋, 石伟林, 徐瑶. Myocardin调控心肌H9C2细胞Ca2+通道机制研究[J]. 中国生物工程杂志, 2016, 36(11): 1-6.
[10] 高越, 檀硕, 任兆瑞, 张敬之. 原位染色检测慢病毒载体转录通读方法的建立[J]. 中国生物工程杂志, 2015, 35(5): 55-60.
[11] 刘雪杰, 林巍然, 唐立春, 孙薇, 魏汉东, 姜颖. 慢病毒载体介导RAB27A基因过表达对人HepG2肝癌细胞增殖的影响[J]. 中国生物工程杂志, 2014, 34(9): 16-23.
[12] 李玉强, 朱志图, 王巍, 李谌, 徐娜, 王钰, 李男, 孙宏治. RNA干扰NUP88基因对人乳腺癌MCF-7细胞生长及侵袭力的影响[J]. 中国生物工程杂志, 2014, 34(9): 31-39.
[13] 秦瑶, 赵鸿彦, 张文航, 王冬梅. 线粒体转录因子A敲低转基因小鼠的研制[J]. 中国生物工程杂志, 2014, 34(7): 44-48.
[14] 付辉, 李菲菲, 马琼, 付怀秀, 崔玉芳, 毛建平. 逆转录法筛选mRNA靶点设计核酶对GPA的表达干预实验研究[J]. 中国生物工程杂志, 2014, 34(3): 84-90.
[15] 王鑫, 陈玲, 孙飞, 陆航. RNAi沉默CXCR7对人结肠癌细胞SW620特异性靶向抑制的实验研究[J]. 中国生物工程杂志, 2014, 34(2): 14-20.