Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (12): 1-7    DOI: 10.13523/j.cb.20171201
研究报告     
基于微流控芯片的体外血脑屏障模型构建 *
蒋丽莉,郑峻松,李艳,邓均,方立超,黄辉()
第三军医大学第一附属医院临床检验学教研室 重庆 400038
Construction of Blood-brain Barrier in vitro Model Based on Microfluidic Chip
Li-li JIANG,Jun-song ZHENG,Yan LI,Jun DENG,Li-chao FANG,Hui HUANG()
Department of Clinical Laboratory Medicine,The First Affiliated Hospital,Third Military Medical University ,Chongqing 400038,China
 全文: PDF(1572 KB)   HTML
摘要: 目的

利用微流控芯片技术构建易调控、接近在体微环境的体外血脑屏障模型。

方法

微流控芯片体外模型采用上下双培养池结构,由多聚碳酸酯膜分隔,两套流路系统控制流体。细胞采用原代分离纯化的大鼠脑血管内皮细胞和星形胶质细胞,免疫荧光技术进行鉴定,分别按次序注入微流控芯片上下培养池,按1μl/min的流速进行灌注培养,构建体外血脑屏障模型,并对此模型进行鉴定和评价。

结果

原代分离纯化得到两种细胞,免疫荧光法鉴定细胞纯度达95%以上。共培养3天紧密连接开始形成,5天达到峰值,超微结构观察显示内皮细胞之间形成紧密连接,且荧光素钠渗透实验和TEER值测量表明屏障形成良好。

结论

成功构建微流控芯片体外血脑屏障模型,可成为一个新的平台应用于药物筛选、神经系统基础等多项研究中。

关键词: 微流控芯片血脑屏障模型在体微环境    
Abstract: Objective:

To create a blood-brain barrier in vitro model by microfluidic chip technology, which were easy to control and close to microenvironment.

Methods:

The microfluidic chips were composed of dual pool structure, separated by the polycarbonate membrane, and there were two sets of flow control system, mouse brain vascular endothelial cells and astrocytes were isolated and purified, the cells were identified by immunofluorescence. Then cells were added to the two pools according to the order, and infused at 1μl/min flow rate. The blood-brain barrier(BBB) model was constructed, and then identified and evaluated.

Results:

Two kinds of cells were obtained by isolation and purification, and the cells were identified by immunofluorescence and the purity was above 95%. After 3 days of co-culture, tight junctions began to develop, and the peak is on the fifth day, the ultrastructural observation showed that the mouse brain vascular endothelial cells formed tight junctions, the penetration experiments of fluorescein sodium and the measurement of TEER showed that barrier formation was good.

Conclusion:

The blood-brain barrier model was constructed based on the microfluidic chip, It may become a new platform for drug screening, neural system basis and other studies.

Key words: Microfluidic chip    Blood-brain barrier model    Microenvironment
收稿日期: 2017-07-05 出版日期: 2017-12-16
ZTFLH:  Q819  
基金资助: 国家自然科学基金面上项目(31371016)资助项目
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
蒋丽莉
郑峻松
李艳
邓均
方立超
黄辉

引用本文:

蒋丽莉,郑峻松,李艳,邓均,方立超,黄辉. 基于微流控芯片的体外血脑屏障模型构建 *[J]. 中国生物工程杂志, 2017, 37(12): 1-7.

Li-li JIANG,Jun-song ZHENG,Yan LI,Jun DENG,Li-chao FANG,Hui HUANG. Construction of Blood-brain Barrier in vitro Model Based on Microfluidic Chip. China Biotechnology, 2017, 37(12): 1-7.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20171201        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I12/1

图1  微流控芯片BBB模型的设计与制作
图2  微流控芯片BBB模型的细胞准备
图3  微流控芯片BBB模型透射电镜图
图4  微流控芯片BBB模型荧光素钠渗透实验
图5  微流控芯片BBB模型TEER值测量
[1] 刘超, 李明昌, 陈谦学 , 等. 血脑屏障结构与功能及其在缺血性脑血管病中的研究进展. 国际神经病学神经外科学杂志, 2016,43(6):564-568 .
Liu C, Li M C, Chen Q X , et al. The structure and function of blood-brain barrier and its progress in ischemic cerebrovascular disease. Journal of International Neurology and Neurosurgery, 2016,43(6):564-568.
[2] 林晓梅, 张铭 . PDMS微流控芯片加工技术研究. 长春工业大学学报, 2013,34(2):172-179.
Lin X M, Zhang M . Experimental study on fabrication of PDMS. Journal of Changchun University of Technology, 2013,34(2):172-179.
[3] 伊波立 . Tat 肽段介导的超顺磁性纳米铁颗粒通过体外血脑屏障模型的研究. 武汉:华中科技大学, 2010. 11-13.
doi: 10.7666/d.d140125
Yi B L . The Research of Tat peptide-assisting USPIO crossing the blood brain barrier model. Wuhan:Huazhong University of Science and Technology, 2010. 11-13.
doi: 10.7666/d.d140125
[4] 李珺, 彭亮, 黄胜和 , 等. 体外血脑屏障模型的建立和发展. 广东医学, 2009,30(4):647-648.
doi: 10.3969/j.issn.1001-9448.2009.04.068
Li J, Peng L, Huang S H , et al. Establishment and development of blood-brain barrier model in vitro. Guangdong Medical Journal, 2009,30(4):647-648
doi: 10.3969/j.issn.1001-9448.2009.04.068
[5] Helms H C, Abbott N J, Burek M , et al. In vitro models of the blood-brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab, 2016,36(5):862-890.
doi: 10.1177/0271678X16630991
[6] Chen L, Zheng X L, Ning H U , et al. Research progress on microfluidic chip of cell separation based on Dielectrophoresis. Chinese Journal of Analytical Chemistry, 2015,43(2):300-309.
doi: 10.1016/S1872-2040(15)60808-8
[7] Decrop D, Brans T, Gijsenbergh P , et al. Optical manipulation of single magnetic beads in a microwell array on a digital microfluidic chip. Analytical Chemistry, 2016,88(17):8596-8612.
doi: 10.1021/acs.analchem.6b01734 pmid: 27448015
[8] Jia M L, Meng Z, Yeong W Y . Characterization and evaluation of 3D printed microfluidic chip for cell processing. Microfluidics and Nanofluidics, 2016,20(1):1-15.
doi: 10.1007/s10404-015-1676-z
[9] Helm M, Meer A, Eijkel J , et al. Microfluidic organ-on-chip technology for blood-brain barrier research. Tissue Barriers, 2016,4(1):1-13.
doi: 10.1080/21688370.2016.1142493 pmid: 27141422
[10] Jia M L, Meng Z, Yeong W Y . Characterization and evaluation of 3D printed microfluidic chip for cell processing. Microfluidics and Nanofluidics, 2016,20(1):1-15.
doi: 10.1007/s10404-015-1676-z
[11] Caplin J D, Granados N G, James M R , et al. Microfluidic organ-on-a-chip technology for advancement of drug development and toxicology. Advanced Healthcare Materials, 2015,4(10):1426-1431.
doi: 10.1002/adhm.201500040 pmid: 25820344
[12] Fu Y, Zhou H, Jia C , et al. A microfluidic chip based on surfactant-doped polydimethylsiloxane (PDMS) in a sandwich configuration for low-cost and robust digital PCR. Sensors & Actuators B Chemical, 2017,245:414-422.
doi: 10.1016/j.snb.2017.01.161
[1] 时忠林,崔俊生,杨柯,胡安中,李亚楠,刘勇,邓国庆,朱灿灿,朱灵. 基于微流控芯片的核酸等温扩增技术研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 116-128.
[2] 陈亮,高姗,毛海央,王云翔,冀斌,金志颖,康琳,杨浩,王景林. 超大表面积自驱动微流控芯片的设计与制备 *[J]. 中国生物工程杂志, 2019, 39(6): 17-24.
[3] 桑维维, 常亚男, 李娟. 微流控芯片对乳腺癌细胞MDA-MB-231的捕获及再培养研究[J]. 中国生物工程杂志, 2015, 35(6): 46-53.
[4] 赵振礼, 蔡绍皙, 戴小珍. 微流控芯片在干细胞研究中的应用[J]. 中国生物工程杂志, 2011, 31(03): 81-86.
[5] 石晶, 于建群. 基于MEMS技术的毛细管电泳芯片[J]. 中国生物工程杂志, 2003, 23(10): 89-92.