Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (6): 111-118    DOI: 10.13523/j.cb.2105053
新冠病毒检测与药物研发     
抗新冠肺炎药物研究进展
许叶春,柳红,李剑峰,沈敬山,蒋华良()
中国科学院上海药物研究所 上海 201203
Recent Progress in Drug Development against COVID-19
XU Ye-chun,LIU Hong,LI Jian-feng,SHEN Jing-shan,JIANG Hua-liang()
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
 全文: PDF(537 KB)   HTML
摘要:

新冠病毒引发的急性呼吸道传染病造成了全球大流行的新冠肺炎,严重危害世界公共卫生安全,迫切需要研发有效治疗新冠肺炎的药物。综述了疫情暴发初期抗新冠肺炎药物研发的进展,重点介绍“老药新用”、小分子及抗体创新药物研发和中药等。通过“老药新用”研究发现多个老药具有抑制新冠病毒复制作用,其中瑞德西韦、法匹拉韦、氯喹和羟氯喹等进入临床研究,尤其是瑞德西韦成为被美国FDA批准用于新冠肺炎治疗的首个药物。针对新冠病毒识别宿主细胞受体的S蛋白开展的抗体发现和靶向3CL蛋白酶及RNA依赖的RNA聚合酶等新冠病毒复制过程中的关键蛋白质开展小分子抑制剂发现是抗新冠肺炎创新药物研究中的主要方向。此外,中药在防治新冠肺炎中发挥了重要作用,金花清感颗粒、莲花清瘟胶囊、血必净注射液、双黄连口服液、清肺排毒汤、化湿败毒方、宣肺败毒方等都进入了新冠肺炎治疗的临床研究及应用。

关键词: 新冠肺炎老药新用小分子药物抗体中药    
Abstract:

The ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses tremendous threats to public health and urgently needs an effective cure. The progress in drug repurposing, therapeutic antibody and small molecule development, and traditional Chinese medicine for the treatment of COVID-19 in the early state of the outbreak were focused. A number of drugs have been revealed to inhibit the replication of SARS-CoV-2 by drug repurposing, which includes remdesivir, favipiravir, chloroquine, and hydroxychloroquine. Remedsivir is the first drug approved by the FDA for the treatment of COVID-19 in USA. As for the development of innovative drug, a major effort has been directed to the discovery of therapeutic antibodies targeting spike protein and inhibitors of 3C-like protease as well as RNA-dependent RNA polymerase of SARS-CoV-2. In addition, traditional Chinese medicine has played an important role in the prevention and treatment of COVID-19. Jinhua Qinggan granule, Lianhua Qingwen capsule, Xuebijing injection, Shuanghuanglian oral liquid, Qingfei Baidu decoction, Huashi Baidu prescription, and Xuanfei Baidu prescription have entered clinical trials for the treatment of COVID-19.

Key words: COVID-19    Drug repurposing    Small-molecule drug    Antibody    Traditional    Chinese medicine
收稿日期: 2021-05-06 出版日期: 2021-07-06
ZTFLH:  Q819  
通讯作者: 蒋华良     E-mail: hljiang@simm.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
许叶春
柳红
李剑峰
沈敬山
蒋华良

引用本文:

许叶春,柳红,李剑峰,沈敬山,蒋华良. 抗新冠肺炎药物研究进展[J]. 中国生物工程杂志, 2021, 41(6): 111-118.

XU Ye-chun,LIU Hong,LI Jian-feng,SHEN Jing-shan,JIANG Hua-liang. Recent Progress in Drug Development against COVID-19. China Biotechnology, 2021, 41(6): 111-118.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2105053        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I6/111

[1] 中华人民共和国国务院新闻办公室. 抗击新冠肺炎疫情的中国行动. 北京: 人民出版社, 2020.
The State Council Information Office of the People’s Republice of China. Fighting COVID-19 China in action. Beijing: People’s Publishing House, 2020.
[2] Saha R P, Sharma A R, Singh M K, et al. Repurposing drugs, ongoing vaccine, and new therapeutic development initiatives against COVID-19. Frontiers in Pharmacology, 2020, 11:1258.
doi: 10.3389/fphar.2020.01258
[3] Yu F, Xiang R, Deng X Q, et al. Receptor-binding domain-specific human neutralizing monoclonal antibodies against SARS-CoV and SARS-CoV-2. Signal Transduction and Targeted Therapy, 2020, 5(1):212.
doi: 10.1038/s41392-020-00318-0
[4] Wang M L, Cao R Y, Zhang L K, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 2020, 30:269-271.
doi: 10.1038/s41422-020-0282-0
[5] Malin J J, Suárez I, Priesner V, et al. Remdesivir against COVID-19 and other viral diseases. Clinical Microbiology Reviews, 2020, 34(1):e00162-20.
[6] Wang Y M, Zhang D Y, Du G H, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet, 2020, 395(10236):1569-1578.
doi: 10.1016/S0140-6736(20)31022-9
[7] Spinner C D, Gottlieb R L, Criner G J, et al. Effect of remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19: a randomized clinical trial. JAMA, 2020, 324(11):1048-1057.
doi: 10.1001/jama.2020.16349
[8] Beigel J H, Tomashek K M, Dodd L E, et al. Remdesivir for the treatment of COVID-19-final report. New England Journal of Medicine, 2020, 383(19):1813-1826.
doi: 10.1056/NEJMoa2007764
[9] Keyaerts E, Vijgen L, Maes P, et al. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochemical and Biophysical Research Communications, 2004, 323(1):264-268.
doi: 10.1016/j.bbrc.2004.08.085
[10] Chang R, Sun W Z. Repositioning chloroquine as antiviral prophylaxis against COVID-19: potential and challenges. Drug Discovery Today, 2020, 25(10):1786-1792.
doi: 10.1016/j.drudis.2020.06.030
[11] Gautret P, Lagier J C, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agents, 2020, 56(1):105949.
doi: 10.1016/j.ijantimicag.2020.105949
[12] Huang M X, Li M, Xiao F, et al. Preliminary evidence from a multicenter prospective observational study of the safety and efficacy of chloroquine for the treatment of COVID-19. National Science Review, 2020, 7(9):1428-1436.
doi: 10.1093/nsr/nwaa113
[13] Yu B, Li C Z, Chen P, et al. Low dose of hydroxychloroquine reduces fatality of critically ill patients with COVID-19. Science China Life Sciences, 2020, 63(10):1515-1521.
doi: 10.1007/s11427-020-1732-2
[14] Yu B, Li C Z, Chen P, et al. Beneficial effects exerted by hydroxychloroquine in treating COVID-19 patients via protecting multiple organs. Science China Life Sciences, 2021, 64(2):330-333.
doi: 10.1007/s11427-020-1782-1
[15] Hoffmann M, Mösbauer K, Hofmann-Winkler H, et al. Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2. Nature, 2020, 585(7826):588-590.
doi: 10.1038/s41586-020-2575-3 pmid: 32698190
[16] Maisonnasse P, Guedj J, Contreras V, et al. Hydroxychloroquine use against SARS-CoV-2 infection in non-human primates. Nature, 2020, 585(7826):584-587.
doi: 10.1038/s41586-020-2558-4 pmid: 32698191
[17] Cavalcanti A B, Zampieri F G, Rosa R G, et al. Hydroxychloroquine with or without azithromycin in mild-to-moderate COVID-19. The New England Journal of Medicine, 2020, 383(21):2041-2052.
doi: 10.1056/NEJMoa2019014
[18] Jin Z M, Du X Y, Xu Y C, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811):289-293.
doi: 10.1038/s41586-020-2223-y
[19] Xiong R, Zhang L K, Li S L, et al. Novel and potent inhibitors targeting DHODH are broad-spectrum antivirals against RNA viruses including newly-emerged coronavirus SARS-CoV-2. Protein & Cell, 2020, 11(10):723-739.
[20] Xu Y C, Jiang H L. Potential treatment of COVID-19 by inhibitors of human dihydroorotate dehydrogenase. Protein & Cell, 2020, 11(10):699-702.
[21] Hu K, Wang M M, Zhao Y, et al. A small-scale medication of leflunomide as a treatment of COVID-19 in an open-label blank-controlled clinical trial. Virologica Sinica, 2020, 35(6):725-733.
doi: 10.1007/s12250-020-00258-7
[22] Dai W H, Zhang B, Jiang X M, et al. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science, 2020, 368(6497):1331-1335.
doi: 10.1126/science.abb4489
[23] Yin W C, Mao C Y, Luan X D, et al. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science, 2020, 368(6498):1499-1504.
[24] Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2): 271-280.e8.
doi: S0092-8674(20)30229-4 pmid: 32142651
[25] Ju B, Zhang Q, Ge J W, et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature, 2020, 584(7819):115-119.
doi: 10.1038/s41586-020-2380-z
[26] Shi R, Shan C, Duan X M, et al. A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature, 2020, 584(7819):120-124.
doi: 10.1038/s41586-020-2381-y
[27] Cao Y L, Su B, Guo X H, et al. Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ B cells. Cell, 2020, 182(1): 73-84.e16.
doi: 10.1016/j.cell.2020.05.025
[28] Tang Y L, Wang Z H, Huo C Y, et al. Antiviral effects of Shuanghuanglian injection powder against influenza A virus H5N1 in vitro and in vivo. Microbial Pathogenesis, 2018, 121:318-324.
doi: 10.1016/j.micpath.2018.06.004
[29] Su H X, Yao S, Zhao W F, et al. Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. Acta Pharmacologica Sinica, 2020, 41(9):1167-1177.
doi: 10.1038/s41401-020-0483-6
[30] Ni L, Zhou L, Zhou M, et al. Combination of western medicine and Chinese traditional patent medicine in treating a family case of COVID-19. Frontiers of Medicine, 2020, 14(2):210-214.
doi: 10.1007/s11684-020-0757-x
[31] Ni L, Wen Z, Hu X W, et al. Effects of Shuanghuanglian oral liquids on patients with COVID-19: a randomized, open-label, parallel-controlled, multicenter clinical trial. Frontiers of Medicine, 2021, https://doi.org/10.1007/s11684-021-0853-6.
[32] Ding Y W, Zeng L J, Li R F, et al. The Chinese prescription lianhuaqingwen capsule exerts anti-influenza activity through the inhibition of viral propagation and impacts immune function. BMC Complementary and Alternative Medicine, 2017, 17(1):130.
doi: 10.1186/s12906-017-1585-7
[33] Li R F, Hou Y L, Huang J C, et al. Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2). Pharmacological Research, 2020, 156:104761.
doi: 10.1016/j.phrs.2020.104761
[34] Hu K, Guan W J, Bi Y, et al. Efficacy and safety of Lianhuaqingwen capsules, a repurposed Chinese herb, in patients with coronavirus disease 2019: a multicenter, prospective, randomized controlled trial. Phytomedicine, 2021, 85:153242.
doi: 10.1016/j.phymed.2020.153242
[1] 贠涛,巩玥,谷芃,徐冰冰,李瑾,赵洗尘. 中国与“一带一路”参与国家抗击新冠肺炎疫情的国际科技合作现状与展望[J]. 中国生物工程杂志, 2021, 41(7): 110-121.
[2] 陈修月,周文锋,何庆,苏冰,邹亚文. 噬菌体Qβ病毒样颗粒的制备、纯化及鉴定[J]. 中国生物工程杂志, 2021, 41(7): 42-49.
[3] 陈文洁,苗先锋. 抗体偶联药物国内研发现状及企业布局分析[J]. 中国生物工程杂志, 2021, 41(6): 105-110.
[4] 史瑞,严景华. 抗新型冠状病毒单克隆中和抗体药物研发进展*[J]. 中国生物工程杂志, 2021, 41(6): 129-135.
[5] 原博,王杰文,康广博,黄鹤. 双特异性纳米抗体的研究进展及其应用 *[J]. 中国生物工程杂志, 2021, 41(2/3): 78-88.
[6] 傅桂娥,李瑾,耿佩然,申梦秋,张金倩楠,赵洗尘. 医疗视角下粤港澳大湾区典型城市的新冠肺炎(COVID-19)疫情防控力量比较研究*[J]. 中国生物工程杂志, 2021, 41(12): 125-140.
[7] 毛开云,李荣,李丹丹,赵若春,范月蕾,江洪波. 全球双特异性抗体药物研发格局分析*[J]. 中国生物工程杂志, 2021, 41(11): 110-118.
[8] 张赛,向乐,李林海,李辉军,王刚,钱纯亘. 新型冠状病毒(2019-nCoV)IgM /IgG抗体检测试剂的研制及性能评价[J]. 中国生物工程杂志, 2020, 40(8): 1-9.
[9] 赵妍淑,张金华,宋浩. 工程原核生物和酵母菌中生产单克隆抗体和抗体片段研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 74-83.
[10] 蔺士新,刘东晨,雷云,熊盛,谢秋玲. TNF-α纳米抗体的筛选、表达及特异性检测 *[J]. 中国生物工程杂志, 2020, 40(7): 15-21.
[11] 杨笑莹,李梦,赵威,唐敏,张志谦. 抗α2δ1/CD3双特异性抗体的制备和功能的初步研究 *[J]. 中国生物工程杂志, 2020, 40(7): 9-14.
[12] 武瑞君,李治非,张鑫,濮润,敖翼,孙燕荣. 新冠病毒抗体药物研发进展及展望分析[J]. 中国生物工程杂志, 2020, 40(5): 1-6.
[13] 王猛,宋慧茹,程雨洁,王毅,杨波,胡征. 以核糖体蛋白L7/L12为分子标志物精准检测肺炎链球菌的研究 *[J]. 中国生物工程杂志, 2020, 40(4): 34-41.
[14] 杨丽,石晓宇,李文蕾,李剑,徐寒梅. 构建噬菌体展示抗体库过程中电穿孔法的条件优化[J]. 中国生物工程杂志, 2020, 40(4): 42-48.
[15] 李彤彤,宋彩玲,杨凯越,王文静,陈慧宇,刘明. 抗犬细小病毒VP2蛋白单链抗体的制备与中和活性研究 *[J]. 中国生物工程杂志, 2020, 40(4): 10-16.