Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (6): 60-70    DOI: 10.13523/j.cb.2102032
综述     
萜烯生物合成中关键酶的研究进展*
苗轶男1,李敬知1,王帅1,李春1,2,王颖1,**()
1 北京理工大学医药分子科学与制剂工程工信部重点实验室 化学与化工学院生物化工研究所 北京 100081
2 清华大学化学工程系 北京 100084
Research Progress of Key Enzymes in Terpene Biosynthesis
MIAO Yi-nan1,LI Jing-zhi1,WANG Shuai1,LI Chun1,2,WANG Ying1,**()
1 Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
2 Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
 全文: PDF(909 KB)   HTML
摘要:

萜烯类化合物是一类高度多样化的天然产物,具有抗肿瘤、抗氧化及免疫调节等生理活性,因此被广泛应用于医药健康、食品、化妆品领域。然而,直接从自然资源中获取萜烯类化合物效率低、成本高,且往往对生态环境产生不利影响,不能实现绿色可持续生产。微生物合成萜烯类化合物近年来备受关注,研究人员从合成途径的构建与调控、关键酶的理性及半理性改造、发酵工艺优化等多个方面进行了探究,取得了丰硕的成果。其中,合成途径中关键酶的催化效率是影响微生物生产萜烯类化合物的重要因素。针对关键酶的研究对于提高微生物合成萜烯类化合物的能力,推动该类天然产物微生物生产的大规模应用具有重要意义。对萜烯类化合物合成途径中的3-羟基-3-甲基戊二酰辅酶A还原酶(HMGR)、1-脱氧-D-木酮糖-5-磷酸合酶(DXS)、异戊二烯基二磷酸合成酶(IDS)和萜烯合酶(TPS)4种关键酶的研究进行了综述,并总结讨论了如何通过代谢工程和蛋白质工程手段以及合成生物学技术调节关键酶的催化活性,提高微生物合成萜烯类化合物的效率,对未来利用微生物合成萜烯类化合物的发展进行了展望。

关键词: 萜烯类化合物关键酶代谢工程蛋白质工程生物合成    
Abstract:

Terpenes are a large class of highly diverse natural products with various physiological activities such as anti-tumor, anti-oxidation and immune regulation. Therefore, they are widely used in the fields of medicine and health, food, cosmetics, and biofuels. However, obtaining terpene compounds directly from natural resources is low efficient, costly, and often has an adverse impact on the ecological environment, making it impossible to achieve green and sustainable production. Microbial synthesis of terpenes has attracted much attention in recent years. Researchers have conducted explorations from the construction and regulation of synthetic pathways, protein engineering, and fermentation process optimization, and have obtained fruitful results. Among them, the efficiency of key enzymes in the synthetic pathway plays an important role in the microbial production of terpenes. Research on key enzymes is of great significance for improving the ability of microorganisms to synthesize terpenes and thus accelerating the large-scale application of microbial production of such natural products. Here, four key enzymes in the synthetic pathway of terpenes including 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), 1-deoxy-D-xylulose-5-phosphate synthase (DXS), isoprenyl diphosphate synthase (IDS), and terpene synthase (TPS) were introduced. The regulation of catalytic activities of key enzymes via metabolic engineering, protein engineering and synthetic biology to improve the efficiency of microbial synthesis of terpenes as well as the prospects of using microorganisms to synthesize terpenes were also reviewed.

Key words: Terpenes    Key enzymes    Metabolic engineering    Protein engineering    Biosynthesis
收稿日期: 2021-02-24 出版日期: 2021-07-06
ZTFLH:  Q819  
基金资助: * 国家重点研发计划(2019YFA0905700);国家自然科学基金(22078020)
通讯作者: 王颖     E-mail: wy2015@bit.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
苗轶男
李敬知
王帅
李春
王颖

引用本文:

苗轶男,李敬知,王帅,李春,王颖. 萜烯生物合成中关键酶的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 60-70.

MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis. China Biotechnology, 2021, 41(6): 60-70.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2102032        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I6/60

图1  萜烯类化合物的生物合成途径
关键酶 来源 参与途径 参考
文献
HMGR Saccharomyces cerevisiae MVA [7]
DXS Escherichia coli MEP [8]
GPPS Saccharomyces cerevisiae 碳骨架的形成 [9]
FPPS Santalum album 碳骨架的形成 [10]
GGPPS Haematococcus pluvialis 碳骨架的形成 [11]
TPS(GES) Valeriana officinalis 进一步修饰碳骨架 [12]
TPS(bAS) Glycyrrhiza glabra 进一步修饰碳骨架 [13]
表1  萜烯生物合成中的关键酶
图2  反式(左)和顺式(右)IDS的反应途径
关键酶 合成萜烯化合物 来源 调控策略 参考文献
HMGR 角鲨烯 Saccharomyces cerevisiae 截除跨膜结构域 [7]
紫穗槐二烯 Saccharomyces cerevisiae 过表达截短的HMGR同工酶 [17]
桉叶素 Saccharomyces cerevisiae HMGR第6位的赖氨酸被精氨酸取代 [18]
法尼烯 Silicibacter pomeroyi 过表达消耗NADH的HMGR [19]
DXS β-胡萝卜素 Escherichia coli 过表达DXS [21]
GPPS
FPPS
GGPPS
香桧烯 Saccharomyces cerevisiae 将ERG20突变为ERG20F96W/N127W [9]
FPPS 长叶烯 Escherichia coli 过表达大肠杆菌内源的FPPS [27]
异雪松醇 Santalum album 融合表达SaFPPS和AaECS [10]
GGPPS 虾青素 Haematococcus pluvialis 过表达雨生红球藻源的GGPPS [29]
番茄红素 Phaffia rhodozyma 定向进化,过表达突变体CrtEC81T [30]
Geraniol synthase (GES) 香叶醇 Catharanthus roseus 过表达截短的CrGES [35]
Magnolia officinalis 单轮诱变 [48]
Pinene synthase (PS) 蒎烯 Escherichia coli 随机突变,过表达突变体PSH346Y/Q456L [36]
Amorpha-diene synthase (ADS) 紫穗槐二烯 Artemisia annua 定点突变,过表达突变体ADST399S/H448A [39]
Germacrene A synthase (GAS)
(GAS)
大根香叶烯A Anabaena variabilis 定点突变,过表达突变体AvGAS F23W [40]
Taxadiene synthase (TXS) 紫杉二烯 Taxus baccata 截除前60个氨基酸 [41, 49]
Levopimaradiene synthesis (LPS) 左旋海松二烯 Ginkgo biloba 饱和突变 [42]
α-amyrin synthase(aAS) α-香树酯醇 Malus domesica 丙氨酸突变、定点突变 [46]
β-amyrin synthase (bAS) β-香树酯醇 Betula platyphylla 组合突变 [50]
表2  萜烯化合物合成中的关键酶及调控策略
[1] Chen M B, Chou W K W, Al-Lami N, et al. Probing the role of active site water in the sesquiterpene cyclization reaction catalyzed by aristolochene synthase. Biochemistry, 2016, 55(20):2864-2874.
doi: 10.1021/acs.biochem.6b00343
[2] Ansari M M, Ahmad A, Kumar A, et al. Aminocellulose-grafted-polycaprolactone coated gelatin nanoparticles alleviate inflammation in rheumatoid arthritis: A combinational therapeutic approach. Carbohydrate Polymers, 2021, 258:117600.
doi: 10.1016/j.carbpol.2020.117600
[3] Yang Y, Wei Y G, Guo X N, et al. Glycyrrhetic acid monoglucuronide: sweetness concentration-response and molecular mechanism as a naturally high-potency sweetener. Food Science and Biotechnology, 2019, 28(4):1187-1193.
doi: 10.1007/s10068-019-00559-y
[4] Benjamin K R, Silva I R, Cherubim J P, et al. Developing commercial production of semi-synthetic artemisinin, and of β-farnesene, an isoprenoid produced by fermentation of Brazilian sugar. Journal of the Brazilian Chemical Society, 2016, 27(8):1339-1345.
[5] Zhang Y L, Long Y, Yu S, et al. Natural volatile oils derived from herbal medicines: A promising therapy way for treating depressive disorder. Pharmacological Research, 2021, 164:105376.
doi: 10.1016/j.phrs.2020.105376
[6] Ajikumar P K, Xiao W H, Tyo K E J, et al. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science, 2010, 330(6000):70-74.
doi: 10.1126/science.1191652
[7] Polakowski T, Stahl U, Lang C. Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast. Applied Microbiology and Biotechnology, 1998, 49(1):66-71.
doi: 10.1007/s002530051138
[8] Matthews P D, Wurtzel E T. Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase. Applied Microbiology and Biotechnology, 2000, 53(4):396-400.
doi: 10.1007/s002530051632
[9] Ignea C, Pontini M, Maffei M E, et al. Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase. ACS Synthetic Biology, 2014, 3(5):298-306.
doi: 10.1021/sb400115e
[10] Navale G R, Sharma P, Said M S, et al. Enhancing epi-cedrol production in Escherichia coli by fusion expression of farnesyl pyrophosphate synthase and epi-cedrol synthase. Engineering in Life Sciences, 2019, 19(9):606-616.
doi: 10.1002/elsc.v19.9
[11] Yin J, Li Y, Li C X, et al. Cloning, expression characteristics of a new FPS gene from birch (Betula platyphylla Suk.) and functional identification in triterpenoid synthesis. Industrial Crops and Products, 2020, 154:112591.
doi: 10.1016/j.indcrop.2020.112591
[12] Wendt K U, Poralla K, Schulz G E. Structure and function of a squalene cyclase. Science, 1997, 277(5333):1811-1815.
doi: 10.1126/science.277.5333.1811
[13] Zhang G L, Cao Q, Liu J Z, et al. Refactoring β-amyrin synthesis in Saccharomyces cerevisiae. AIChE Journal, 2015, 61(10):3172-3179.
doi: 10.1002/aic.v61.10
[14] Bach T J. Hydroxymethylglutaryl-CoA reductase, a key enzyme in phytosterol synthesis? Lipids, 1986, 21(1):82-88.
pmid: 3959769
[15] Istvan E S, Palnitkar M, Buchanan S K, et al. Crystal structure of the catalytic portion of human HMG-CoA reductase: insights into regulation of activity and catalysis. The EMBO Journal, 2000, 19(5):819-830.
doi: 10.1093/emboj/19.5.819
[16] Peng B Y, Plan M R, Chrysanthopoulos P, et al. A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae. Metabolic Engineering, 2017, 39:209-219.
doi: 10.1016/j.ymben.2016.12.003
[17] Ro D K, Paradise E M, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 2006, 440(7086):940-943.
doi: 10.1038/nature04640
[18] Ignea C, Cvetkovic I, Loupassaki S, et al. Improving yeast strains using recyclable integration cassettes, for the production of plant terpenoids. Microbial Cell Factories, 2011, 10(1):1-18.
doi: 10.1186/1475-2859-10-1
[19] Meadows A L, Hawkins K M, Tsegaye Y, et al. Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature, 2016, 537(7622):694-697.
doi: 10.1038/nature19769 pmid: 27654918
[20] Estévez J M, Cantero A, Reindl A, et al. 1-deoxy-d-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. Journal of Biological Chemistry, 2001, 276(25):22901-22909.
doi: 10.1074/jbc.M100854200
[21] Diao J J, Song X Y, Zhang L, et al. Tailoring cyanobacteria as a new platform for highly efficient synthesis of astaxanthin. Metabolic Engineering, 2020, 61:275-287.
doi: 10.1016/j.ymben.2020.07.003
[22] Banerjee A, Wu Y, Banerjee R, et al. Feedback inhibition of deoxy-d-xylulose-5-phosphate synthase regulates the methylerythritol 4-phosphate pathway. Journal of Biological Chemistry, 2013, 288(23):16926-16936.
doi: 10.1074/jbc.M113.464636
[23] Banerjee A, Preiser A L, Sharkey T D. Engineering of recombinant poplar deoxy-D-xylulose-5-phosphate synthase (PtDXS) by site-directed mutagenesis improves its activity. PLoS One, 2016, 11(8):e0161534.
doi: 10.1371/journal.pone.0161534
[24] Chen C C, Zhang L L, Yu X J, et al. Versatile Cis-isoprenyl diphosphate synthase superfamily members in catalyzing carbon-carbon bond formation. ACS Catalysis, 2020, 10(8):4717-4725.
doi: 10.1021/acscatal.0c00283
[25] Kim S, Kim E J, Park J B, et al. Crystal structure of geranylgeranyl pyrophosphate synthase (crtE) from Nonlabens dokdonensis DSW-6. Biochemical and Biophysical Research Communications, 2019, 518(3):479-485.
doi: 10.1016/j.bbrc.2019.08.071
[26] Li M, Xu S, Lu W. Engineering Corynebacterium glutamicum for geraniol production. Transactions of Tianjin University, 2020, 27(4):1-8.
doi: 10.1007/s12209-020-00274-4
[27] Cao Y J, Zhang R B, Liu W, et al. Manipulation of the precursor supply for high-level production of longifolene by metabolically engineered Escherichia coli. Scientific Reports, 2019, 9(1):95.
doi: 10.1038/s41598-018-36495-w
[28] Ruiz-Sola M Á, Coman D, Beck G, et al. Arabidopsis geranylgeranyl diphosphate synthase 11 is a hub isozyme required for the production of most photosynthesis-related isoprenoids. New Phytologist, 2016, 209(1):252-264.
doi: 10.1111/nph.2016.209.issue-1
[29] Huang D Q, Liu W F, Li A G, et al. Discovery of geranylgeranyl pyrophosphate synthase (GGPPS) paralogs from Haematococcus pluvialis based on Iso-seq analysis and their function on astaxanthin biosynthesis. Marine Drugs, 2019, 17(12):E696.
[30] Xie W P, Lv X, Ye L D, et al. Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering. Metabolic Engineering, 2015, 30:69-78.
doi: 10.1016/j.ymben.2015.04.009
[31] Dong H, Chen S, Zhu J X, et al. Enhance production of diterpenoids in yeast by overexpression of the fused enzyme of ERG20 and its mutant mERG20. Journal of Biotechnology, 2020, 307:29-34.
doi: S0168-1656(19)30907-1 pmid: 31689467
[32] Tarshis L C, Proteau P J, Kellogg B A, et al. Regulation of product chain length by isoprenyl diphosphate synthases. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(26):15018-15023.
[33] Rudolf J D, Chang C Y. Terpene synthases in disguise: enzymology, structure, and opportunities of non-canonical terpene synthases. Natural Product Reports, 2020, 37(3):425-463.
doi: 10.1039/C9NP00051H
[34] Christianson D W. Structural and chemical biology of terpenoid cyclases. Chemical Reviews, 2017, 117(17):11570-11648.
doi: 10.1021/acs.chemrev.7b00287 pmid: 28841019
[35] Jiang G Z, Yao M D, Wang Y, et al. Manipulation of GES and ERG20 for geraniol overproduction in Saccharomyces cerevisiae. Metabolic Engineering, 2017, 41:57-66.
doi: 10.1016/j.ymben.2017.03.005
[36] Tashiro M, Kiyota H, Kawai-Noma S, et al. Bacterial production of pinene by a laboratory-evolved pinene-synthase. ACS Synthetic Biology, 2016, 5(9):1011-1020.
doi: 10.1021/acssynbio.6b00140 pmid: 27247193
[37] Muangphrom P, Misaki M, Suzuki M, et al. Identification and characterization of (+)-α-bisabolol and 7-epi-silphiperfol-5-ene synthases fromArtemisia abrotanum. Phytochemistry, 2019, 164:144-153.
doi: S0031-9422(19)30313-9 pmid: 31151061
[38] Liu J M, Ni M Y, Fan Y F, et al. Structure and properties of artimisinin. Acta Chimica Sinica, 1979, 37:129-41.
[39] Abdallah I I, van Merkerk R, Klumpenaar E, et al. Catalysis of Amorpha-4, 11-diene synthase unraveled and improved by mutability landscape guided engineering. Scientific Reports, 2018, 8:9961.
doi: 10.1038/s41598-018-28177-4 pmid: 29967474
[40] Zhang W X, Guo J Q, Wang Z, et al. Improved production of germacrene A, a direct precursor of β-elemene, in engineered Saccharomyces cerevisiae by expressing a cyanobacterial germacrene A synthase. Microbial Cell Factories, 2021, 20(1):7.
doi: 10.1186/s12934-020-01500-3
[41] Abdallah I I, Pramastya H, van Merkerk R, et al. Metabolic engineering of Bacillus subtilis toward taxadiene biosynthesis as the first committed step for taxol production. Frontiers in Microbiology, 2019, 10:218.
doi: 10.3389/fmicb.2019.00218 pmid: 30842758
[42] Leonard E, Ajikumar P K, Thayer K, et al. Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(31):13654-13659.
[43] Abe I. Enzymatic synthesis of cyclic triterpenes. Natural Product Reports, 2007, 24(6):1311-1331.
doi: 10.1039/b616857b
[44] Thimmappa R, Geisler K, Louveau T, et al. Triterpene biosynthesis in plants. Annual Review of Plant Biology, 2014, 65:225-257.
doi: 10.1146/annurev-arplant-050312-120229 pmid: 24498976
[45] Zhou J W, Hu T Y, Gao L H, et al. Friedelane-type triterpene cyclase in celastrol biosynthesis from Tripterygium wilfordii and its application for triterpenes biosynthesis in yeast. The New Phytologist, 2019, 223(2):722-735.
doi: 10.1111/nph.2019.223.issue-2
[46] Yu Y, Rasool A, Liu H R, et al. Engineering Saccharomyces cerevisiae for high yield production of α-amyrin via synergistic remodeling of α-amyrin synthase and expanding the storage pool. Metabolic Engineering, 2020, 62:72-83.
doi: 10.1016/j.ymben.2020.08.010
[47] Yu Y, Chang P C, Yu H, et al. Productive amyrin synthases for efficient α-amyrin synthesis in engineered Saccharomyces cerevisiae. ACS Synthetic Biology, 2018, 7(10):2391-2402.
doi: 10.1021/acssynbio.8b00176
[48] Mansouri M, Mohammadi F. Transcriptome analysis to identify key genes involved in terpenoid and rosmarinic acid biosynthesis in lemon balm (Melissa officinalis). Gene, 2021, 773:145417.
doi: 10.1016/j.gene.2021.145417
[49] Lauersen K J, Wichmann J, Baier T, et al. Phototrophic production of heterologous diterpenoids and a hydroxy-functionalized derivative from Chlamydomonas reinhardtii. Metabolic Engineering, 2018, 49:116-127.
doi: S1096-7176(18)30206-4 pmid: 30017797
[50] Yin J, Sun L, Li Y, et al. Functional identification of BpMYB21 and BpMYB61 transcription factors responding to MeJA and SA in birch triterpenoid synthesis. BMC Plant Biology, 2020, 20(1):374.
doi: 10.1186/s12870-020-02521-1
[51] Xie Z X, Li B Z, Mitchell L A, et al. “Perfect” designer chromosome V and behavior of a ring derivative. Science, 2017, 355(6329): eaaf4704.
[52] Li C Y, Gao X P, Peng X, et al. Intelligent microbial cell factory with genetic pH shooting (GPS) for cell self-responsive base/acid regulation. Microbial Cell Factories, 2020, 19(1):202.
doi: 10.1186/s12934-020-01457-3
[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 张恒,刘慧燕,潘琳,王红燕,李晓芳,王彤,方海田. 生物法合成γ-氨基丁酸的研究策略*[J]. 中国生物工程杂志, 2021, 41(8): 110-119.
[3] 李冰,张传波,宋凯,卢文玉. 生物合成稀有人参皂苷的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 71-88.
[4] 翟君叶,成旭,孙泽敏,李春,吕波. 毛蕊花糖苷的生物合成研究进展[J]. 中国生物工程杂志, 2021, 41(5): 94-104.
[5] 李媛媛,李妍,曹英秀,宋浩. 黄素介导的胞外电子转移研究与工程改造*[J]. 中国生物工程杂志, 2021, 41(10): 89-99.
[6] 王光路, 王梦园, 周忆菲, 马科, 张帆, 杨雪鹏. 吡咯喹啉醌生物合成研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 103-113.
[7] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[8] 刘啸尘, 范代娣, 杨帆, 武占省. 人参皂苷化合物生物合成进展 *[J]. 中国生物工程杂志, 2021, 41(1): 80-93.
[9] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[10] 段海荣,魏赛金,黎循航. 铜绿假单胞菌中鼠李糖脂生物合成的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 43-51.
[11] 邓廷山,武国干,孙宇,唐雪明. 苯乳酸生物合成的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 62-68.
[12] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[13] 薛艳婷,吴胜波,徐程杨,袁博鑫,杨书鹃,刘家亨,乔建军,朱宏吉. 群体感应在动态代谢调控中的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 74-83.
[14] 李炳娟,刘金锭,廖谊芳,韩文英,刘珂,侯晨露,张磊. 老黄酶OYE家族的蛋白质工程的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 163-169.
[15] 李志刚,陈宝峰,张中华,常景玲. 辅助能量物质强化环磷酸腺苷发酵合成机制 *[J]. 中国生物工程杂志, 2020, 40(1-2): 102-108.