Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (6): 38-44    DOI: 10.13523/j.cb.2102024
技术与方法     
连续流层析技术在亲和层析中的应用及生产放大评估
张玲(),曹小丹,杨海旭,李文蕾
天士力生物医药股份有限公司 天津 300410
The Application of Continuous Purification in Affinity Chromatography and Evaluation of Production Scale-up
ZHANG Ling(),CAO Xiao-dan,YANG Hai-xu,LI Wen-lei
Tasly Biophamaceuticals Co., Ltd., Tianjin 300410, China
 全文: PDF(1320 KB)   HTML
摘要:

生物制药行业迅速发展,尤其是上游表达量的增加和规模的扩大,促使上游培养采用连续灌流方式,同时也推动了下游纯化生产工艺相应的采取连续纯化策略。以灌流培养的Fc融合蛋白为例,采用 BioSMB PD设备,对比了下游工艺亲和层析捕获步骤中单柱批次纯化和连续流层析纯化的样品纯度和收率,并在此基础上进行小试工艺放大和生产实际用量成本计算评估。连续流层析实现了上游灌流培养与下游亲和层析连续化的可行性,工艺稳定,回收率与批次纯化接近,但相比批次纯化,生产效率明显提高,填料载量提高,同时填料使用效率提高,生产成本显著降低。

关键词: 亲和层析连续流层析批次纯化    
Abstract:

The rapid development of the biopharmaceutical industry, especially the increase in upstream expression and the expansion of scale, had promoted the perfusion culture for upstream. This also promoted the continuous purification strategy for the downstream purification process. In order to compare the purity and yield between batch purification and continuous purification, taking the perfusion of Fc fusion protein as an example, the experiment was carried out with BioSMB PD equipment, and on this basis, process scale-up and production cost evaluation were carried out. The continuous purification realized the continuity of perfusion culture and affinity chromatography. Compared with batch purification, the continuous purification process has many advantages. It can observably reduce the amount of the chromatography resin, improve the efficiency of packing, and reduce buffer used. The production efficiency is significantly improved. The production costs are significantly reduced.

Key words: Affinity chromatograph    Continuous purification    Batch purification
收稿日期: 2021-02-22 出版日期: 2021-07-06
ZTFLH:  Q819  
通讯作者: 张玲     E-mail: linglong121@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张玲
曹小丹
杨海旭
李文蕾

引用本文:

张玲,曹小丹,杨海旭,李文蕾. 连续流层析技术在亲和层析中的应用及生产放大评估[J]. 中国生物工程杂志, 2021, 41(6): 38-44.

ZHANG Ling,CAO Xiao-dan,YANG Hai-xu,LI Wen-lei. The Application of Continuous Purification in Affinity Chromatography and Evaluation of Production Scale-up. China Biotechnology, 2021, 41(6): 38-44.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2102024        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I6/38

图1  连续层析工艺开发系统(a)和环形系统运行(b)示意图
Step Buffer Volume Flow rate
/(mL/min)
loopback 48.10 CV 3.4
Load Cell harvest 40.1 CV 2.8
Wash 1 20 mmol/L PB,150 mmol/L NaCl, pH 7.4 8.00 CV 2.5
Wash 2 20 mmol/L citric acid buffer, pH 5.5 5.00 CV 2.3
Elution 20 mmol/L citric acid buffer, pH 3.0 6.00 CV 2.5
CIP 0.1 mol/L NaOH 3.00 CV 1.0
Equilibration 20 mmol/L PB,150 mmol/L NaCl, pH 7.4 5.00 CV 2.5
表1  EXP1层析工艺流程
Step Buffer Volume Flow rate
/(mL/min)
loopback 58.00 CV 7.5
Load Cell harvest 50.0 CV 6.5
Wash 1 20 mmol/L PB,150 mmol/L NaCl, pH 7.4 8.00 CV 3.6
Wash 2 20 mmol/L citric acid buffer, pH 5.5 5.00 CV 5.6
Elution 20 mmol/L citric acid buffer, pH 3.0 6.00 CV 6.6
CIP 0.1 mol/L NaOH 3.00 CV 2.8
Equilibration 20 mmol/L PB,150 mmol/L NaCl, pH 7.4 5.00 CV 5.5
表2  EXP2层析工艺流程
图2  穿透曲线图
图3  CadenceTM BioSMB 响应曲线
图4  洗脱层析图谱
Process contrast Batch EXP1
Cycle 1-3
EXP2
Cycle 1-3
EXP2
Cycle 4-6
EXP2
Cycle 7-10
EXP2
Cycle 11-13
Feed concentration/(mg/mL) 1.2 1.25 1.03 1.08 1.08 1.01
Load volume/mL 105 1 850 5 620 5 660 6 443 5 623
Column volume/mL 5 5 12 12 12 12
DBC/(mg/mL) 25 51 54 57 48 52
RT/min 3.7 3.7 3.7 3.7 3.7 3.7
Cycle(include washdown) 1 4 4 4 5 4
Number of columns 1 3 3 3 3 3
Yield/% 96.5 87.0 94.8 85.9 92.0 102.5
Purity/% 99.6 98.1-98.9 98.0-99.6 97.2-99.0 96.8-98.5 97.0-98.3
Aggregates/% 0.4 1.9 -1.1 0.4-2.0 1.0-2.8 2.5-3.2 2.7-3.0
Production efficiency/[g/(L·h)] 6.5 12.5 11 10.5 9.5 11.6
表3  批次层析与连续流层析结果分析
Process contrast Batch Continuous
Process of scale/L 400 400
Feed concentration/(g/L) 1.5 1.5
Process time/h 3.8×2 12
Number of columns 1柱×2批次 3柱×3批
Retention time/min 3.7 3.7
Dynamic binding capacity/(g/L) 25 51
Time of each cycle/h 3.8 4
Column diameter/cm 40 14
Column height/cm 9.5 8.5
Column volume/L 12 1.3
Total resin volume/L 12 4
Resin cost saving(one time)/% -66.70
Resin cost saving(total)/% -50
Buffer saving/% -50
Production efficiency/[g/(L·h)] 6.5 12.5
Production efficiency multiple 1.92×
表4  放大评估计算表
[1] Fisher A C, Kamga M H, Agarabi C, et al. The current scientific and regulatory landscape in advancing integrated continuous biopharmaceutical manufacturing. Trends in Biotechnology, 2019, 37(3):253-267.
doi: S0167-7799(18)30248-8 pmid: 30241924
[2] Pollock J, Ho S V, Farid S S. Fed-batch and perfusion culture processes: economic, environmental, and operational feasibility under uncertainty. Biotechnology and Bioengineering, 2013, 110(1):206-219.
doi: 10.1002/bit.24608 pmid: 22806692
[3] Klutz S, Magnus J, Lobedann M, et al. Developing the biofacility of the future based on continuous processing and single-use technology. Journal of Biotechnology, 2015, 213:120-130.
doi: 10.1016/j.jbiotec.2015.06.388
[4] Konstantinov K B, Cooney C L. White paper on continuous bioprocessing may 20-21 2014 continuous manufacturing symposium. Journal of Pharmaceutical Sciences, 2015, 104(3):813-820.
doi: 10.1002/jps.24268 pmid: 25417595
[5] Moore C M V. Continuous manufacturing - FDA perspective on submissions and implementation. [2011-09-13]. http://www.pqri.org/workshops/SampleSize/Moore.pdf.
[6] Chatterjee S. “FDA Perspective on Continuous Manufacturing”, presented at IFPAC Annual Meeting. [2012-01-01].https://www.fda.gov/media/85366/download.
[7] US FDA. Draft guidance for industry: quality considerations for continuous manufacturing. [2019-02-01].https://www.fda.gov/media/121314/downloa.
[8] Bisschops M. BioSMBTM technology: continuous countercurrent chromatography enabling a fully disposable process. Biopharmaceutical Production Technology. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012: 769-791.
[9] Bisschops M, Brower M. The impact of continuous multicolumn chromatography on biomanufacturing efficiency. Pharmaceutical Bioprocessing, 2013, 1(4):361-372.
doi: 10.4155/pbp.13.46
[10] Godawat R, Brower K, Jain S, et al. Periodic counter-current chromatography:design and operational considerations for integrated and continuous purification of proteins. Biotechnology Journal, 2012, 7(12):1496-1508.
doi: 10.1002/biot.201200068 pmid: 23070975
[11] Aumann L, Morbidelli M. A continuous multicolumn countercurrent solvent gradient purification (MCSGP) process. Biotechnology and Bioengineering, 2007, 98(5):1043-1055.
doi: 10.1002/(ISSN)1097-0290
[1] 付大伟,孙莹莹,徐伟. 融合蛋白NusA-hRI的高效异源表达、纯化及活性分析[J]. 中国生物工程杂志, 2019, 39(3): 21-28.
[2] 王云龙, 赵二霞, 李玉林. Thymidine Kinase 1(TK1)重组蛋白的表达、纯化及鉴定[J]. 中国生物工程杂志, 2017, 37(9): 15-22.
[3] 薛玲, 刘江宁, 张耀, 张纯, 王祺, 秦川, 刘永东, 苏志国. EV71多表位抗原亲和纯化及类病毒颗粒胞外自组装[J]. 中国生物工程杂志, 2016, 36(7): 34-40.
[4] 蒙国基, 邓义熹, 李乐, 罗豪晖, 于玉根. 变速上样在MabSelect填料上分离WLB303[J]. 中国生物工程杂志, 2016, 36(6): 65-75.
[5] 代云见, 张勇侠, 何勇智, 丛聪, 张涛, 王明蓉. 技术与方法Anti-IgE单链抗体纯化工艺研究及活性鉴定[J]. 中国生物工程杂志, 2015, 35(12): 51-57.
[6] 赵倩倩, 周晓今, 柳小庆, 杨文竹, 李素贞, 刘奇, 陈茹梅. 转基因玉米中植酸酶蛋白免疫亲和纯化体系的建立[J]. 中国生物工程杂志, 2013, 33(6): 125-130.
[7] 包海生, 高秀峰, 郑雪妮, 李永生. 壳聚糖锌离子固定化亲和层析填料的制备与性质[J]. 中国生物工程杂志, 2012, 32(05): 85-90.
[8] 程丽芳,沐万孟,张涛,江波. Bacillus Stearothermophilus IAM 11001 L-阿拉伯糖异构酶在大肠杆菌中的表达、纯化及活性研究[J]. 中国生物工程杂志, 2008, 28(9): 52-55.
[9] 窦佳,蔡河,姬芳玲,崔文举,王静云,包永明,安利佳. Gln49-磷脂酶A2基因工程定点突变及酶活性分析[J]. 中国生物工程杂志, 2007, 27(5): 21-27.
[10] 张青,张思河,苏明权,沈建军,韦晓明,郝晓柯. 人γ-精浆蛋白的亲和纯化及其糖基化分析[J]. 中国生物工程杂志, 2007, 27(2): 99-102.
[11] 余德荣,游力,赵跃然,王郡甫,许晓群,高春义. 重组hKGF2原核表达载体的构建及其蛋白质的纯化[J]. 中国生物工程杂志, 2007, 27(2): 9-13.
[12] 雷旭宇, 杨青, 包永明, 许建强, 栾雨时, 安利佳. 大连蛇岛蝮蛇类凝血酶在大肠杆菌中的表达与纯化[J]. 中国生物工程杂志, 2004, 24(9): 44-48.
[13] 金晓霞, 罗坚, 苏志国. 血浆蛋白分离纯化的进展——亲和技术的重要作用[J]. 中国生物工程杂志, 2004, 24(7): 74-81.
[14] 李义良, 宋海, 赵静, 张红锋, 李载平, 赵慕钧. LPTS抗体的制备和活性检测[J]. 中国生物工程杂志, 2004, 24(3): 44-47.
[15] 宛传丹, 黄宇烽, 许晓风. 人精子蛋白SP22的cDNA克隆、表达及纯化分析[J]. 中国生物工程杂志, 2004, 24(12): 59-63.