Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (2/3): 89-97    DOI: 10.13523/j.cb.2011012
综述     
Mecp2影响Rett综合征中代谢功能的研究进展 *
蔡润泽1,2,王正波1,2,陈永昌1,2,**()
1 昆明理工大学灵长类转化医学研究院 昆明 650500
2 省部共建非人灵长类生物医学国家重点实验室 昆明 650500
Research Progress of Mecp2 Affecting Metabolic Function in Rett Syndrome
CAI Run-ze1,2,WANG Zheng-bo1,2,CHEN Yong-chang1,2,**()
1 Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
2 State Key Laboratory of Primate Biomedical Research, Kunming 650500, China
 全文: PDF(474 KB)   HTML
摘要:

Rett综合征(RTT)是一种由X连锁的甲基CpG结合蛋白2(Mecp2)基因突变引起的神经系统疾病,突变致病的具体调节机制尚不清楚。对RTT的研究大多聚焦在中枢神经系统,越来越多的研究显示Mecp2在各种代谢系统中也发挥着重要作用。回顾了RTT发展历史、Mecp2的发现及主要作用,并综述了MeCP2在脂质代谢、线粒体代谢和细胞自噬等方面的研究进展。总体而言,Mecp2突变会影响患者体内胆固醇和脂肪代谢,最终导致体型肥胖和肝功能障碍,线粒体形态和功能发生变化,细胞自噬过程发生紊乱,而以上代谢发生紊乱会导致RTT患者的生活质量严重下降。这些发现为进一步理解RTT发生机制、探寻可能的治疗靶点提供了一定的理论依据。

关键词: Rett综合征Mecp2脂质代谢线粒体代谢细胞自噬    
Abstract:

Rett syndrome (RTT) is a neurological disease caused by mutations in the X-linked gene methyl CpG binding protein 2 (Mecp2). RTT occurs mostly in girls, but the mechanism that Mecp2 mutations caused RTT symptoms is largely unknown. The recent studies of RTT mostly focus on the role that Mecp2 plays in the central nervous system. This article reviews the development history of RTT, the discovery and main effects of Mecp2, and then discusses the research progress of MeCP2 in lipid metabolism, mitochondrial metabolism, and autophagy. Overall, Mecp2 mutations can affect cholesterol and fat metabolism in patients and lead to body obesity and liver dysfunction; the morphology and function mitochondrial changes and the disorders of autophagy occur. Because of the above metabolic disorders, the quality of life of RTT patients is seriously reduced. These findings provide a theoretical basis for exploring the mechanism of RTT deeply and screening possible therapeutic targets.

Key words: Rett syndrome    Mecp2    Lipid metabolism    Mitochondrial metabolism    Cell autophagy
收稿日期: 2020-11-05 出版日期: 2021-04-08
ZTFLH:  Q819  
基金资助: * 国家自然科学基金资助项目(U1602224)
通讯作者: 陈永昌     E-mail: chenyc@lpbr.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
蔡润泽
王正波
陈永昌

引用本文:

蔡润泽,王正波,陈永昌. Mecp2影响Rett综合征中代谢功能的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 89-97.

CAI Run-ze,WANG Zheng-bo,CHEN Yong-chang. Research Progress of Mecp2 Affecting Metabolic Function in Rett Syndrome. China Biotechnology, 2021, 41(2/3): 89-97.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2011012        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I2/3/89

[1] Zhang X Y, Bao X H, Zhang J J, et al. Molecular characteristics of Chinese patients with Rett syndrome. European Journal of Medical Genetics, 2012,55(12):677-681.
doi: 10.1016/j.ejmg.2012.08.009 pmid: 22982301
[2] Neul J L, Kaufmann W E, Glaze D G, et al. Rett syndrome: revised diagnostic criteria and nomenclature. Annals of Neurology, 2010,68(6):944-950.
[3] Kumamoto T, Hanashima C. Evolutionary conservation and conversion of Foxg1 function in brain development. Development,Growth & Differentiation, 2017,59(4):258-269.
doi: 10.1111/dgd.12367 pmid: 28581027
[4] Writing Group for Practice Guidelines for Diagnosis and Treatment of Genetic Diseases Medical Genetics Branch of Chinese Medical Association, Guan R W, Li Q Y, et al. Clinical practice guidelines for Rett syndrome. China Journal of Medical Genetics, 2020,37(3):308-312.
[5] Humphrey K N, Horn P S, Olshavsky L, et al. Features of menstruation and menstruation management in individuals with Rett syndrome. Journal of Pediatric and Adolescent Gynecology, 2020. DOI: https://doi.org/10.1016/j.jpag.2020.11.002.
[6] Singh J, Lanzarini E, Santosh P. Organic features of autonomic dysregulation in paediatric brain injury - Clinical and research implications for the management of patients with Rett syndrome. Neuroscience & Biobehavioral Reviews, 2020,118:809-827.
doi: 10.1016/j.neubiorev.2020.08.012 pmid: 32861739
[7] Jellinger K, Seitelberger F, Opitz J M, et al. Neuropathology of rett syndrome. American Journal of Medical Genetics, 1986,25(S1):259-288.
[8] Jellinger K, Armstrong D, Zoghbi H Y, et al. Neuropathology of Rett syndrome. Acta Neuropathologica, 1988,76(2):142-158.
doi: 10.1007/BF00688098 pmid: 2900587
[9] Armstrong D D. The neuropathology of the Rett syndrome. Brain & Development, 1992,14(Suppl):S89-S98.
[10] Kaufmann W E, Moser H W. Dendritic anomalies in disorders associated with mental retardation. Cerebral Cortex, 2000,10(10):981-991.
[11] Hagberg B, Witt-Engerstr?m I. Rett syndrome: a suggested staging system for describing impairment profile with increasing age towards adolescence. American Journal of Medical Genetics Supplement, 1986,1(1):47-59.
[12] Clarke A, Gardner-Medwin D, Richardson J, et al. Abnormalities of carbohydrate metabolism and of OCT gene function in the Rett syndrome. Brain and Development, 1990,12(1):119-124.
[13] Haas R H, Rice M A, Trauner D A, et al. Therapeutic effects of a ketogenic diet in Rett syndrome. American Journal of Medical Genetics Supplement, 1986,1:225-246.
pmid: 3087185
[14] Matsuishi T, Urabe F, Komori H, et al. The Rett syndrome and CSF lactic acid patterns. Brain and Development, 1992,14(1):68-70.
pmid: 1590531
[15] Lewis J D, Meehan R R, Henzel W J, et al. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to Methylated DNA. Cell, 1992,69(6):905-914.
pmid: 1606614
[16] D’Esposito M, Quaderi N A, Ciccodicola A, et al. Isolation, physical mapping, and northern analysis of the X-linked human gene encoding methyl CpG-binding protein, MECP2. Mammal Genome, 1996,7(7):533-535.
[17] Vilain A, Apiou F, Vogt N, et al. Assignment of the gene for methyl-CpG-binding protein 2 (MECP2) to human chromosome band Xq28 by in situ hybridization. Cytogenetics Cell Genetics, 1996,74(4):293-294.
pmid: 8976388
[18] Reichwald K, Thiesen J, Wiehe T, et al. Comparative sequence analysis of the MECP2-locus in human and mouse reveals new transcribed regions. Mammalian Genome, 2000,11(3):182-190.
[19] Tate P, Skarnes W, Bird A. The methyl-CpG binding protein MeCP2 is essential for embryonic development in the mouse. Nature Genetics, 1996,12(2):205-208.
[20] Kishi N, Macklis J D. Dissecting MECP2 function in the central nervous system. Journal of Child Neurology, 2005,20(9):753-759.
pmid: 16225831
[21] Samaco R C, Nagarajan R P, Braunschweig D, et al. Multiple pathways regulate MeCP2 expression in normal brain development and exhibit defects in autism-spectrum disorders. Human Molecular Genetics, 2004,13(6):629-639.
[22] Cohen D R S, Matarazzo V, Palmer A M, et al. Expression of MeCP2 in olfactory receptor neurons is developmentally regulated and occurs before synaptogenesis. Molecular and Cellular Neuroscience, 2003,22(4):417-429.
[23] Jung B P, Jugloff D G M, Zhang G M , et al. The expression of methyl CpG binding factor MeCP2 correlates with cellular differentiation in the developing rat brain and in cultured cells. Journal of Neurobiology, 2003,55(1):86-96.
[24] Nan X S, Meehan R R, Bird A. Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. Nucleic Acids Research, 1993,21(21):4886-4892.
[25] Lagger S, Connelly J C, Schweikert G, et al. MeCP2 recognizes cytosine methylated tri-nucleotide and di-nucleotide sequences to tune transcription in the mammalian brain. PLoS Genet, 2017,13(5):e1006793.
[26] Nan X, Tate P, Li E, et al. DNA methylation specifies chromosomal localization of MeCP2. Molecular and Cellular Biology, 1996,16(1):414-421.
[27] Lyst M J, Ekiert R, Ebert D H, et al. Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor. Nature Neuroscience, 2013,16(7):898-902.
[28] Ebert D H, Gabel H W, Robinson N D, et al. Activity-dependent phosphorylation of MeCP2 threonine 308 regulates interaction with NCoR. Nature, 2013,499(7458):341-345.
[29] Chandler S P, Guschin D, Landsberger N, et al. The methyl-CpG binding transcriptional repressor MeCP2 stably associates with nucleosomal DNA. Biochemistry, 1999,38(22):7008-7018.
[30] Adams V H, McBryant S J, Wade P A, et al. Intrinsic disorder and autonomous domain function in the multifunctional nuclear protein, MeCP2. Journal of Biological Chemistry, 2007,282(20):15057-15064.
[31] Lagger S, Connelly J, Schweikert G, et al. MeCP2 recognizes cytosine methylated tri-nucleotide and di-nucleotide sequences to tune transcription in the mammalian brain. PLoS Genetics, 2017,13(5):e1006793.
[32] Bellini E, Pavesi G, Barbiero I, et al. MeCP2 post-translational modifications: a mechanism to control its involvement in synaptic plasticity and homeostasis? Frontiers in Cellular Neuroscience, 2014,8:236. DOI: 10.3389/fncel.2014.00236.
[33] Ausió J, de Paz A M, Esteller M. MeCP2: the long trip from a chromatin protein to neurological disorders. Trends in Molecular Medicine, 2014,20(9):487-498.
[34] Lee W, Kim J, Yun J M, et al. MeCP2 regulates gene expression through recognition of H3K27me3. Nature Communication, 2020,11(1):3140-3156.
[35] Schmidt A, Zhang H, Cardoso M C. MeCP2 and chromatin compartmentalization. Cells, 2020,9(4):878.
[36] Amir R E, Van den Veyver I B, Wan M, et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genetics, 1999,23(2):185-188.
[37] Neul J L, Fang P, Barrish J, et al. Specific mutations in Methyl-CpG-Binding Protein 2 confer different severity in Rett syndrome. Neurology, 2008,70(16):1313-1321.
[38] Sung Jae Lee S, Wan M M, Francke U. Spectrum of MECP2 mutations in Rett syndrome. Brain and Development, 2001,23:S138-S143.
[39] Stenson P D, Ball E V, Mort M, et al. Human Gene Mutation Database (HGMD?): 2003 update. Human Mutation, 2003,21(6):577-581.
[40] Trappe R, Laccone F, Cobilanschi J, et al. MECP2 mutations in sporadic cases of Rett syndrome are almost exclusively of paternal origin. The American Journal of Human Genetics, 2001,68(5):1093-1101.
[41] Wan M M, Lee S S J, Zhang X Y, et al. Rett syndrome and beyond: recurrent spontaneous and familial MECP2 mutations at CpG hotspots. The American Journal of Human Genetics, 1999,65(6):1520-1529.
[42] Yoon J A, Yoo Y, Lee J S, et al. An early seizure variant type of a male Rett syndrome patient with a MECP2 p.Arg133His missense mutation. Molecular Genetics & Genomic Medicine, 2019,7(3):e532. DOI: 10.1002/mgg3.532.
pmid: 30569584
[43] Düh A, Till á, Bánfai Z, et al. MECP2 mutation in a male patient identified in the background of severe epileptic encephalopathy. Orvosi Hetilap, 2019,160(51):2036-2039.
[44] Bach S, Ryan N M, Guasoni P, et al. Methyl-CpG-binding protein 2 mediates overlapping mechanisms across brain disorders. Scientific Reports, 2020,10(1):22255-22286.
pmid: 33335218
[45] Festerling K, Can K, Kügler S, et al. Overshooting subcellular redox-responses in Rett-mouse hippocampus during neurotransmitter stimulation. Cells, 2020,9(12):2539.
[46] Kleefstra T, Yntema H G, Oudakker A R, et al. De novo MECP2 frameshift mutation in a boy with moderate mental retardation, obesity and gynaecomastia. Clinical Genetics, 2002,61(5):359-362.
[47] Zappella M, Meloni I, Longo I, et al. Preserved speech variants of the Rett syndrome: molecular and clinical analysis. American Journal of Medical Genetics, 2001,104(1):14-22.
[48] Motil K J, Caeg E, Barrish J O, et al. Gastrointestinal and nutritional problems occur frequently throughout life in girls and women with Rett syndrome. Journal of Pediatric Gastroenterology and Nutrition, 2012,55(3):292-298.
[49] Psoni S, Sofocleous C, Traeger-Synodinos J, et al. Phenotypic and genotypic variability in four males with MECP2 gene sequence aberrations including a novel deletion. Pediatric Research, 2010,67(5):551-556.
[50] Samaco R C, McGraw C M, Ward C S, et al. Female Mecp2(+/-) mice display robust behavioral deficits on two different genetic backgrounds providing a framework for pre-clinical studies. Human Molecular Genetics, 2013,22(1):96-109.
[51] Park M, Aja S, Li Q, et al. Anaplerotic triheptanoin diet enhances mitochondrial substrate use to remodel the metabolome and improve lifespan, motor function, and sociability in MeCP2-null mice. PLoS One, 2014,9(10):e109527.
[52] Torres-Andrade R, Moldenhauer R, Gutierrez-Bertín N, et al. The increase in body weight induced by lack of methyl CpG binding protein-2 is associated with altered leptin signalling in the hypothalamus. Experimental Physiology, 2014,99(9):1229-1240.
pmid: 24996410
[53] Bhattacherjee A, Winter M, Eggimann L, et al. Motor, somatosensory, viscerosensory and metabolic impairments in a heterozygous female rat model of Rett syndrome. International Journal of Molecular Sciences, 2017,19(1):1-14.
[54] Kerr B, Soto C J, Saez M, et al. Transgenic complementation of MeCP2 deficiency: phenotypic rescue of Mecp2-null mice by isoform-specific transgenes. European Journal of Human Genetics, 2012,20(1):69-76.
[55] Fukuhara S, Nakajima H, Sugimoto S, et al. High-fat diet accelerates extreme obesity with hyperphagia in female heterozygous Mecp2-null mice. PLoS One, 2019,14(1):e0210184.
[56] Kyle S M, Saha P K, Brown H M, et al. MeCP2 co-ordinates liver lipid metabolism with the NCoR1/HDAC3 corepressor complex. Human Molecular Genetics, 2016,25(14):3029-3041.
[57] Chahrour M, Jung S Y, Shaw C, et al. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science, 2008,320(5880):1224-1229.
[58] Georgel P T, Horowitz-Scherer R A, Adkins N , et al. Chromatin compaction by human MeCP2. Assembly of novel secondary chromatin structures in the absence of DNA methylation. Journal of Biological Chemistry, 2003,278(34):32181-32188.
[59] Baker S A, Chen L, Wilkins A D, et al. An AT-hook domain in MeCP2 determines the clinical course of Rett syndrome and related disorders. Cell, 2013,152(5):984-996.
[60] Buchovecky C M, Turley S D, Brown H M, et al. A suppressor screen in Mecp2 mutant mice implicates cholesterol metabolism in Rett syndrome. Nature Genetics, 2013,45(9):1013-1020.
[61] Porter T D. New insights into the role of cytochrome P450 reductase (POR) in microsomal redox biology. Acta Pharmaceutica Sinica B, 2012,2(2):102-106.
[62] Osono Y, Woollett L A, Herz J, et al. Role of the low density lipoprotein receptor in the flux of cholesterol through the plasma and across the tissues of the mouse. The Journal of Clinical Investigation, 1995,95(3):1124-1132.
pmid: 7883961
[63] van der Wulp M Y M, Verkade H J, Groen A K. Regulation of cholesterol homeostasis. Molecular and Cellular Endocrinology, 2013,368(1-2):1-16.
[64] Pfrieger F W, Ungerer N. Cholesterol metabolism in neurons and astrocytes. Progress in Lipid Research, 2011,50(4):357-371.
[65] Zlokovic B V. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron, 2008,57(2):178-201.
[66] Justice M J, Buchovecky C M, Kyle S M, et al. A role for metabolism in Rett syndrome pathogenesis: New clinical findings and potential treatment targets. Rare Diseases (Austin, Tex), 2013,1(1):e27265.
[67] Segatto M, Trapani L, Di Tunno I, et al. Cholesterol metabolism is altered in Rett syndrome: a study on plasma and primary cultured fibroblasts derived from patients. PLoS One, 2014,9(8):e104834.
[68] Sticozzi C, Belmonte G, Pecorelli A, et al. Scavenger receptor B1 post-translational modifications in Rett syndrome. FEBS Letters, 2013,587(14):2199-2204.
pmid: 23711372
[69] Motil K J, Barrish J O, Lane J, et al. Vitamin D deficiency is prevalent in girls and women with Rett syndrome. Journal of Pediatric Gastroenterology and Nutrition, 2011,53(5):569-574.
[70] Cardaioli E, Dotti M T, Hayek G, et al. Studies on mitochondrial pathogenesis of Rett syndrome: ultrastructural data from skin and muscle biopsies and mutational analysis at mtDNA nucleotides 10463 and 2835. Journal of Submicroscopic Cytology and Pathology, 1999,31(2):301-304.
pmid: 10457616
[71] Wakai S J, Kameda K, Ishikawa Y, et al. Rett syndrome: findings suggesting axonopathy and mitochondrial abnormalities. Pediatric Neurology, 1990,6(5):339-343.
pmid: 2242177
[72] Cornford M E, Philippart M, Jacobs B, et al. Neuropathology of Rett syndrome: case report with neuronal and mitochondrial abnormalities in the brain. Journal of Child Neurology, 1994,9(4):424-431.
pmid: 7822737
[73] Belichenko P V, Wright E E, Belichenko N P, et al. Widespread changes in dendritic and axonal morphology in Mecp2-mutant mouse models of Rett syndrome: evidence for disruption of neuronal networks. The Journal of Comparative Neurology, 2009,514(3):240-258.
[74] Park M J, Aja S, Li Q, et al. Anaplerotic triheptanoin diet enhances mitochondrial substrate use to remodel the metabolome and improve lifespan, motor function, and sociability in MeCP2-null mice. PLoS One, 2014,9(10):e109527.
pmid: 25299635
[75] Kriaucionis S, Paterson A, Curtis J, et al. Gene expression analysis exposes mitochondrial abnormalities in a mouse model of Rett syndrome. Molecular and Cellular Biology, 2006,26(13):5033-5042.
doi: 10.1128/MCB.01665-05 pmid: 16782889
[76] Gibson J H, Slobedman B, Kn H, et al. Downstream targets of methyl CpG binding protein 2 and their abnormal expression in the frontal cortex of the human Rett syndrome brain. BMC Neuroscience, 2010,11(1):1-16.
[77] Gold W A, Williamson S L, Kaur S, et al. Mitochondrial dysfunction in the skeletal muscle of a mouse model of Rett syndrome (RTT): Implications for the disease phenotype. Mitochondrion, 2014,15:10-17.
[78] GroBer E, Hirt U, Janc O A, et al. Oxidative burden and mitochondrial dysfunction in a mouse model of Rett syndrome. Neurobiology of Disease, 2012,48(1):102-114.
pmid: 22750529
[79] Jin L W, Horiuchi M, Wulff H, et al. Dysregulation of glutamine transporter SNAT1 in Rett syndrome microglia: a mechanism for mitochondrial dysfunction and neurotoxicity. The Journal of Neuroscience, 2015,35(6):2516-2529.
doi: 10.1523/JNEUROSCI.2778-14.2015 pmid: 25673846
[80] Saywell V, Viola A, Confort-Gouny S, et al. Brain magnetic resonance study of Mecp2 deletion effects on anatomy and metabolism. Biochemical and Biophysical Research Communications, 2006,340(3):776-783.
[81] Galloway C A, Yoon Y. What comes first, misshape or dysfunction? The view from metabolic excess. Journal of General Physiology, 2012,139(6):455-463.
[82] Janc O A, Müller M. The free radical scavenger Trolox dampens neuronal hyperexcitability, reinstates synaptic plasticity, and improves hypoxia tolerance in a mouse model of Rett syndrome. Frontiers in Cellular Neuroscience, 2014,8:56. DOI: 10.3389/fncel.2014.00056.
[83] Della Ragione F, Vacca M, Fioriniello S, et al. MECP2, a multi-talented modulator of chromatin architecture. Briefings in Functional Genomics, 2016,15(6):420-431.
[84] Shah R R, Bird A P. MeCP2 mutations: progress towards understanding and treating Rett syndrome. Genome Medicine, 2017,9(1):17-20.
[85] Zhang J, Zhao J M, Gao N, et al. MECP2 expression in gastric cancer and its correlation with clinical pathological parameters. Medicine (Baltimore), 2017,96(31):e7691.
[86] Bhave S A, Uht R M. CpG methylation and the methyl CpG binding protein 2 (MeCP2) are required for restraining corticotropin releasing hormone (CRH) gene expression. Molecular and Cellular Endocrinology, 2017,454(1):158-164.
[87] Tao H, Yang J J, Hu W, et al. MeCP2 regulation of cardiac fibroblast proliferation and fibrosis by down-regulation of DUSP5. International Journal of Biological Macromolecules, 2016,82:68-75.
pmid: 26511729
[88] Nikitina T, Shi X, Ghosh R P, et al. Multiple modes of interaction between the methylated DNA binding protein MeCP2 and chromatin. Molecular and Cellular Biology, 2007,27(3):864-877.
pmid: 17101771
[89] Hansen J C, Ghosh R P, Woodcock C L. Binding of the Rett syndrome protein, MeCP2, to methylated and unmethylated DNA and chromatin. IUBMB Life, 2010,62(10):732-738.
[90] Tsompana M, Buck M J. Chromatin accessibility: a window into the genome. Epigenetics & Chromatin, 2014,7(1):1-16.
[91] Borrelli E, Nestler E J, Allis C D, et al. Decoding the epigenetic language of neuronal plasticity. Neuron, 2008,60(6):961-974.
pmid: 19109904
[92] Wang C L, Wang F, Li Z, et al. MeCP2-mediated epigenetic regulation in senescent endothelial progenitor cells. Stem Cell Research & Therapy, 2018,9(1):87.
doi: 10.1186/s13287-018-0828-y pmid: 29615114
[93] Zha S, Li Z, Chen S, et al. MeCP2 inhibits cell functionality through FoxO3a and autophagy in endothelial progenitor cells. Aging, 2019,11(17):6714-6733.
pmid: 31477637
[94] Volkmann I, Kumarswamy R, Pfaff N, et al. MicroRNA-mediated epigenetic silencing of sirtuin1 contributes to impaired angiogenic responses. Circulation Research, 2013,113(8):997-1003.
pmid: 23960241
[95] Nott A, Cheng J, Gao F, et al. Histone deacetylase 3 associates with MeCP2 to regulate FOXO and social behavior. Nature Neuroscience, 2016,19(11):1497-1505.
pmid: 27428650
[96] Sbardella D, Tundo G R, Campagnolo L, et al. Retention of mitochondria in mature human red blood cells as the result of autophagy impairment in Rett syndrome. Scientific Reports, 2017,7(1):12297.
pmid: 28951555
[97] Zha S, Li Z, Chen S, et al. MeCP2 inhibits cell functionality through FoxO3a and autophagy in endothelial progenitor cells. Aging, 2019,11(17):6714-6733.
[98] Squillaro T, Alessio N, Capasso S, et al. Senescence phenomena and metabolic alteration in mesenchymal stromal cells from a mouse model of Rett syndrome. International Journal of Molecular Sciences, 2019,20(10):2508-2527.
[99] Sbardella D, Tundo G, Campagnolo L, et al. Retention of mitochondria in mature human red blood cells as the result of autophagy impairment in Rett syndrome. Scientific Reports, 2017,7(1):12297-12309.
[100] Kyle S M, Vashi N, Justice M J. Rett syndrome: a neurological disorder with metabolic components. Open Biology, 2018,8(2):170216-170233.
doi: 10.1098/rsob.170216 pmid: 29445033
[1] 周勤,王爽,张婷,李善刚,陈永昌. 小鼠及猕猴胚胎MECP2基因T158M单碱基突变体系的建立 *[J]. 中国生物工程杂志, 2020, 40(6): 31-39.
[2] 沈冰蕾,王宇轩,韩硕,李熹,杨卓妮娜,邹紫雯,刘娟. 非编码RNA在细胞自噬中的研究进展 *[J]. 中国生物工程杂志, 2019, 39(12): 56-63.