Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (2/3): 70-77    DOI: 10.13523/j.cb.2008125
综述     
基于纳米信号标签的表面增强拉曼散射在病原菌检测中的应用 *
周紫卉1,2,刘晓娴1,2,黄昊1,肖瑞2,祁克宗1,**(),王升启2,**()
1 安徽农业大学 合肥 230036
2 军事医学研究院 辐射医学研究所 北京 100850
Application of Surface-enhanced Raman Scattering Based onNano-signal Tags in Pathogen Detection
ZHOU Zi-hui1,2,LIU Xiao-xian1,2,HUANG Hao1,XIAO Rui2,QI Ke-zong1,**(),WANG Sheng-qi2,**()
1 Anhui Agricultural University, Hefei 230036, China
2 Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China
 全文: PDF(7116 KB)   HTML
摘要:

表面增强拉曼散射(surface-enhanced Raman scattering, SERS)技术由于其灵敏度高、检测速度快、高特异性和无损等优点,在病原菌检测领域受到了广泛的关注。主要总结了近年来基于纳米信号标签的SERS方法在检测病原菌领域中的研究进展,并介绍了多功能SERS检测平台的构建及在病原菌检测中的应用。最后,对SERS这一技术作为实时、高效和可靠的病原菌检测工具的未来发展进行了展望。

关键词: 表面增强拉曼散射拉曼标签病原菌快速检测    
Abstract:

The surface-enhanced Raman scattering (SERS) technology has received extensive attention in the field of pathogen detection due to its prominent advantages of high sensitivity, rapid detection, high specificity and non-destructive characterization.The research progress of marker-based SERS methods in the field of pathogen detection in recent years was summarized. Moreover, the construction and application of a multifunctional SERS detection platform for pathogenic bacteria were introduced. Finally, the future development of SERS as a real-time, efficient and reliable tool for detecting pathogens is prospected.

Key words: Surface-enhanced Raman scatter    Lable-based SERS    Pathogenic bacteria    Rapid detection
收稿日期: 2020-08-17 出版日期: 2021-04-08
ZTFLH:  Q819  
基金资助: * 安徽高校协同创新项目资助项目(GXXT-2019-035)
通讯作者: 祁克宗,王升启     E-mail: qkz@ahau.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
周紫卉
刘晓娴
黄昊
肖瑞
祁克宗
王升启

引用本文:

周紫卉,刘晓娴,黄昊,肖瑞,祁克宗,王升启. 基于纳米信号标签的表面增强拉曼散射在病原菌检测中的应用 *[J]. 中国生物工程杂志, 2021, 41(2/3): 70-77.

ZHOU Zi-hui,LIU Xiao-xian,HUANG Hao,XIAO Rui,QI Ke-zong,WANG Sheng-qi. Application of Surface-enhanced Raman Scattering Based onNano-signal Tags in Pathogen Detection. China Biotechnology, 2021, 41(2/3): 70-77.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2008125        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I2/3/70

图1  用于细菌检测的基于标签和基于无标签的SERS方法的示意图
[1] Dong A, Lan S, Huang J F, et al. Modifying Fe3O4-functionalized nanoparticles with N-halamine and their magnetic/antibacterial properties. ACS Applied Materials & Interfaces, 2011,3(11):4228-4235.
pmid: 22008460
[2] Yang D T, Zhou H B, Haisch C, et al. Reproducible E. coli detection based on label-free SERS and mapping. Talanta, 2016,146:457-463.
doi: 10.1016/j.talanta.2015.09.006 pmid: 26695290
[3] Zhou H B, Yang D T, Ivleva N P, et al. Label-free in situ discrimination of live and dead bacteria by surface-enhanced raman scattering. Analytical Chemistry, 2015,87(13):6553-6561.
doi: 10.1021/acs.analchem.5b01271 pmid: 26017069
[4] Srivastava S K, Hamo H B, Kushmaro A, et al. Highly sensitive and specific detection of E. coli by a SERS nanobiosensor chip utilizing metallic nanosculptured thin films. The Analyst, 2015,140(9):3201-3209.
[5] Lu X N, Samuelson D R, Xu Y H, et al. Detecting and tracking nosocomial methicillin-resistant Staphylococcus aureus using a microfluidic SERS biosensor. Analytical Chemistry, 2013,85(4):2320-2327.
pmid: 23327644
[6] Zhou H B, Yang D T, Ivleva N P, et al. SERS detection of bacteria in water by in situ coating with Ag nanoparticles. Analytical Chemistry, 2014,86(3):1525-1533.
doi: 10.1021/ac402935p pmid: 24387044
[7] Walter A, M?rz A, Schumacher W, et al. Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device. Lab on a Chip, 2011,11(6):1013-1021.
doi: 10.1039/c0lc00536c pmid: 21283864
[8] Pahlow S, Meisel S, Cialla-May D, et al. Isolation and identification of bacteria by means of Raman spectroscopy. Advanced Drug Delivery Reviews, 2015,89:105-120.
doi: 10.1016/j.addr.2015.04.006 pmid: 25895619
[9] Jarvis R M, Goodacre R. Characterisation and identification of bacteria using SERS. Chemical Society Reviews, 2008,37(5):931-936.
[10] Abdelhamid H N, Wu H F. Multifunctional graphene magnetic nanosheet decorated with chitosan for highly sensitive detection of pathogenic bacteria. Journal of Materials Chemistry B, 2013,1(32):3950-3961.
doi: 10.1039/c3tb20413h pmid: 32261221
[11] Cheng D, Yu M Q, Fu F, et al. Dual recognition strategy for specific and sensitive detection of bacteria using aptamer-coated magnetic beads and antibiotic-capped gold nanoclusters. Analytical Chemistry, 2016,88(1):820-825.
pmid: 26641108
[12] Qiu S Y, Lin Z Y, Zhou Y M, et al. Highly selective colorimetric bacteria sensing based on protein-capped nanoparticles. The Analyst, 2015,140(4):1149-1154.
doi: 10.1039/c4an02106a pmid: 25503063
[13] Li D Y, Dong Y H, Li B Y, et al. Colorimetric sensor array with unmodified noble metal nanoparticles for naked-eye detection of proteins and bacteria. The Analyst, 2015,140(22):7672-7677.
pmid: 26446513
[14] Liu T Y, Tsai K T, Wang H H, et al. Functionalized arrays of Raman-enhancing nanoparticles for capture and culture-free analysis of bacteria in human blood. Nature Communications, 2011,2:1.
[15] Fleischmann M, Hendra P J, McQuillan A J. Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 1974,26(2):163-166.
[16] Jeanmaire D L, van Duyne R P. Surface Raman spectroelectrochemistry. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977,84(1):1-20.
[17] Golightly R S, Doering W E, Natan M J. Surface-enhanced Raman spectroscopy and homeland security: a perfect match? ACS Nano, 2009,3(10):2859-2869.
[18] Jarvis R M, Goodacre R. Discrimination of bacteria using surface-enhanced Raman spectroscopy. Analytical Chemistry, 2004,76(1):40-47.
doi: 10.1021/ac034689c pmid: 14697030
[19] Wang Y L, Lee K, Irudayaraj J. Silver nanosphere SERS probes for sensitive identification of pathogens. The Journal of Physical Chemistry C, 2010,114(39):16122-16128.
[20] Driskell J D, Kwarta K M, Lipert R J, et al. Low-level detection of viral pathogens by a surface-enhanced Raman scattering based immunoassay. Analytical Chemistry, 2005,77(19):6147-6154.
doi: 10.1021/ac0504159 pmid: 16194072
[21] Kneipp K, Kneipp H, Itzkan I, et al. Surface-enhanced Raman scattering and biophysics. Journal of Physics: Condensed Matter, 2002,14(18):R597-R624.
[22] Premasiri W R, Moir D T, Klempner M S, et al. Characterization of the surface enhanced Raman scattering (SERS) of bacteria. The Journal of Physical Chemistry B, 2005,109(1):312-320.
pmid: 16851017
[23] Patel I S, Premasiri W R, Moir D T, et al. Barcoding bacterial cells: A SERS based methodology for pathogen identification. Journal Raman Spectroscopy, 2008,39(11):1660-1672.
[24] Efrima S, Zeiri L. Understanding SERS of bacteria. Journal of Raman Spectroscopy, 2009,40(3):277-288.
[25] Stiles P L, Dieringer J A, Shah N C, et al. Surface-enhanced Raman spectroscopy. Annual Review of Analytical Chemistry,, 2008,1(1):601-626.
[26] Porter M D, Lipert R J, Siperko L M, et al. SERS as a bioassay platform: fundamentals, design, and applications. Chemical Society reviews, 2008,37(5):1001-1011.
[27] Wang, C W, Wang J F, Li M, et al. A rapid SERS method for label-free bacteria detection using polyethylenimine-modified Au-coated magnetic microspheres and Au@Ag nanoparticles. The Analyst, 2016,141(22):6226-6238.
doi: 10.1039/c6an01105e pmid: 27704076
[28] Wang C W, Gu B, Liu Q Q, et al. Combined use of vancomycin-modified Ag-coated magnetic nanoparticles and secondary enhanced nanoparticles for rapid surface-enhanced Raman scattering detection of bacteria. International Journal of Nanomedicine, 2018,13:1159-1178.
pmid: 29520142
[29] Wang J F, Wu X Z, Wang C W, et al. Facile synthesis of Au-coated magnetic nanoparticles and their application in bacteria detection via a SERS method. ACS Applied Materials & Interfaces, 2016,8(31):19958-19967.
doi: 10.1021/acsami.6b07528 pmid: 27420923
[30] Peng R, Si Y, Deng T, et al. A novel SERS nanoprobe for the ratiometric imaging of hydrogen peroxide in living cells. Chemical Communications(Cambridge, England), 2016,52(55):8553-8556.
[31] Zhang X, Li Y Y, Cao J P, et al. Retrieve the Bethe states of quantum integrable models solved via the off-diagonal Bethe Ansatz. Journal of Statistical Mechanics: Theory and Experiment, 2015,2015(5):P05014.
[32] Fabris L. SERS tags: The next promising tool for personalized cancer detection? ChemNanoMat, 2016,2(4):249-258.
[33] Lin Y F, Hamme Ii A T. Targeted highly sensitive detection/eradication of multi-drug resistant Salmonella DT104 through gold nanoparticle-SWCNT bioconjugated nanohybrids. The Analyst, 2014,139(15):3702-3705.
doi: 10.1039/c4an00744a pmid: 24897935
[34] Saadet Uluok Z U, Burcu G, Ugur T, et al. Designing multilayered nanoplatforms for SERS-based detection of genetically modified organisms. J Nanopart Res, 2015,17(1):1-12.
[35] Liu H B, Du X J, Zang Y X, et al. SERS-based lateral flow strip biosensor for simultaneous detection of Listeria monocytogenes and Salmonella enterica serotype enteritidis. Journal of Agricultural and Food Chemistry, 2017,65(47):10290-10299.
doi: 10.1021/acs.jafc.7b03957 pmid: 29095602
[36] Cho I H, Bhandari P, Patel P, et al. Membrane filter-assisted surface enhanced Raman spectroscopy for the rapid detection of E. coli O157:H7 in ground beef. Biosensors and Bioelectronics, 2015,64:171-176.
[37] Kearns H, Goodacre R, Jamieson L E, et al. SERS detection of multiple antimicrobial-resistant pathogens using nanosensors. Analytical Chemistry, 2017,89(23):12666-12673.
doi: 10.1021/acs.analchem.7b02653 pmid: 28985467
[38] Khan S A, Singh A K, Senapati D, et al. Targeted highly sensitive detection of multi-drug resistant salmonella DT104 using gold nanoparticles. Chemical Communications, 2011,47(33):9444.
pmid: 21776500
[39] Huang P J, Tay L L, Tanha J, et al. Single-domain antibody-conjugated nanoaggregate-embedded beads for targeted detection of pathogenic bacteria. Chemistry, 2009,15(37):9330-9334.
doi: 10.1002/chem.200901397 pmid: 19655352
[40] Xiao N, Wang C, Yu C X. A self-referencing detection of microorganisms using surface enhanced Raman scattering nanoprobes in a test-in-a-tube platform. Biosensors, 2013,3(3):312-326.
[41] Abbaspour A, Norouz-Sarvestani F, Noori A, et al. Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of staphylococcus aureus. Biosensors and Bioelectronics, 2015,68:149-155.
doi: 10.1016/j.bios.2014.12.040 pmid: 25562742
[42] Yuan J L, Yu Y, Li C, et al. Visual detection and microplate assay for Staphylococcus aureus based on aptamer recognition coupled to tyramine signal amplification. Microchimica Acta, 2014,181(3-4):321-327.
[43] Chang Y C, Yang C Y, Sun R L, et al. Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles. Scientific Reports, 2013,3:1863.
[44] Duan N, Wu S J, Zhu C Q, et al. Dual-color upconversion fluorescence and aptamer-functionalized magnetic nanoparticles-based bioassay for the simultaneous detection of Salmonella Typhimurium and Staphylococcus aureus. Analytica Chimica Acta, 2012,723:1-6.
pmid: 22444566
[45] Wang J F, Wu X Z, Wang C W, et al. Magnetically assisted surface-enhanced raman spectroscopy for the detection of Staphylococcus aureus based on aptamer recognition. ACS Applied Materials & Interfaces, 2015,7(37):20919-20929.
doi: 10.1021/acsami.5b06446 pmid: 26322791
[46] Zhang H, Ma X Y, Liu Y, et al. Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Biosensors and Bioelectronics, 2015,74:872-877.
doi: 10.1016/j.bios.2015.07.033 pmid: 26241735
[47] Duan N, Chang B Y, Zhang H, et al. Salmonella typhimurium detection using a surface-enhanced Raman scattering-based aptasensor. International Journal of Food Microbiology, 2016,218:38-43.
[48] Duan N, Shen M, Qi S, et al. A SERS aptasensor for simultaneous multiple pathogens detection using gold decorated PDMS substrate. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2020,230:118103.
[49] Zhang C Y, Wang C W, Xiao R, et al. Sensitive and specific detection of clinical bacteria via vancomycin-modified Fe3O4@Au nanoparticles and aptamer-functionalized SERS tags. Journal of Materials Chemistry B, 2018,6(22):3751-3761.
[50] Yin Y M, Li Q, Ma S S, et al. Prussian blue as a highly sensitive and background-free resonant Raman reporter. Analytical Chemistry, 2017,89(3):1551-1557.
doi: 10.1021/acs.analchem.6b03521 pmid: 28208262
[51] El-Boubbou K, Gruden C, Huang X F. Magnetic glyco-nanoparticles: A unique tool for rapid pathogen detection, decontamination, and strain differentiation. Journal of the American Chemical Society, 2007,129(44):13392-13393.
[52] Tamer U, Boyac?iH, Temur E, et al. Fabrication of magnetic gold nanorod particles for immunomagnetic separation and SERS application . Journal of Nanoparticle Research, 2011,13(8):3167-3176.
[53] Wang Y L, Ravindranath S, Irudayaraj J. Separation and detection of multiple pathogens in a food matrix by magnetic SERS nanoprobes. Analytical and Bioanalytical Chemistry, 2011,399(3):1271-1278.
doi: 10.1007/s00216-010-4453-6 pmid: 21136046
[54] Pang Y F, Wan N, Shi L L, et al. Dual-recognition surface-enhanced Raman scattering(SERS)biosensor for pathogenic bacteria detection by using vancomycin-SERS tags and aptamer-Fe3O4@Au. Analytica Chimica Acta, 2019,1077:288-296.
[55] Drake P, Jiang P S, Chang H W, et al. Raman based detection of Staphylococcus aureus utilizing single domain antibody coated nanoparticle labels and magnetic trapping. Analytical Methods, 2013,5(16):4152.
[56] Guven B, Basaran-akgul N, Temur E , et al. SERS-based sandwich immunoassay using antibody coated magnetic nanoparticles for Escherichia colienumeration. The Analyst, 2011,136(4):740-748.
pmid: 21125089
[57] Yang S J, Ouyang H, Su X X, et al. Dual-recognition detection of Staphylococcus aureus using vancomycin-functionalized magnetic beads as concentration carriers. Biosensors and Bioelectronics, 2016,78:174-180.
doi: 10.1016/j.bios.2015.11.041 pmid: 26606309
[58] Yuan K S, Mei Q S, Guo X I, et al. Antimicrobial peptide based magnetic recognition elements and Au@Ag-GO SERS tags with stable internal standards: a three in one biosensor for isolation, discrimination and killing of multiple bacteria in whole blood. Chemical Science, 2018,9(47):8781-8795.
[59] Zhou Q T, Meng G W, Zheng P, et al. A surface-enhanced Raman scattering sensor integrated with battery-controlled fluidic device for capture and detection of trace small molecules. Scientific Reports, 2015,5:12865.
doi: 10.1038/srep12865 pmid: 26238799
[60] Wang R, Kim K, Choi N, et al. Highly sensitive detection of high-risk bacterial pathogens using SERS-based lateral flow assay strips. Sensors and Actuators B: Chemical, 2018,270:72-79.
[61] Liu H B, Chen C Y, Zhang C N, et al. Functionalized AuMBA @Ag nanoparticles as an optical and SERS dual probe in a lateral flow strip for the quantitative detection of Escherichia coli O157:H7. Journal of Food Science, 2019,84(10):2916-2924.
doi: 10.1111/1750-3841.14766 pmid: 31502678
[62] Shi L L, Xu L, Xiao R, et al. Rapid, quantitative, high-sensitive detection of Escherichia coli O157:H7 by gold-shell silica-core nanospheres-based surface-enhanced Raman scattering lateral flow immunoassay. Frontiers in Microbiology, 2020,11:596005.
[63] Rodríguez-Lorenzo L, Garrido-Maestu A, Bhunia A K, et al. Gold nanostars for the detection of foodborne pathogens via surface-enhanced Raman scattering combined with microfluidics. ACS Applied Nano Materials, 2019,2(10):6081-6086.
[1] 徐文娟,宋丹,陈丹,龙辉,陈禹保,龙峰. 基于CRISPR/Cas生物传感原理的病原菌检测技术研究进展*[J]. 中国生物工程杂志, 2021, 41(8): 67-74.
[2] 陈晨,胡劲超,曹姗姗,门冬. 新型冠状病毒抗原快速检测研发现状及展望*[J]. 中国生物工程杂志, 2021, 41(6): 119-128.
[3] 秦思楠,唐录华,高文惠. 恩诺沙星分子印迹电化学传感器的制备及其在食品快速检测中的应用 *[J]. 中国生物工程杂志, 2019, 39(3): 65-74.
[4] 黄海龙, 朱鹏, 杨浩. LAMP-LFD技术及其在生物快检方面应用[J]. 中国生物工程杂志, 2015, 35(12): 89-95.
[5] 韩启灿, 霍光华, 罗桂祥. 一株病原拮抗野生菌株的筛选、鉴定及其发酵工艺优化[J]. 中国生物工程杂志, 2014, 34(5): 66-74.
[6] 王建华, 权春善, 赵朋超, 范圣第. DKP对3株病原菌生物膜的抑制作用研究[J]. 中国生物工程杂志, 2011, 31(8): 61-65.
[7] 冯飞, 谢振文, 曾慕衡. 鼠伤寒沙门氏菌多重PCR检测方法的研究[J]. 中国生物工程杂志, 2011, 31(01): 65-69.
[8] 姜金庆 张海棠 王自良 王建华 范国英. 19-去甲睾酮异源性ciELISA试剂盒的研制及应用[J]. 中国生物工程杂志, 2010, 30(09): 68-74.
[9] 徐义刚 李苏龙 杨君宏 李丹丹 姜艳春 谢晓峰 崔丽春. 水产品中创伤弧菌DNA环介导恒温扩增快速检测方法的建立及初步应用[J]. 中国生物工程杂志, 2010, 30(06): 96-102.
[10] 尤元海 曾浔 过玮 尹焱 张茂俊 张建中. 重要肠道病原菌多重PCR-基因芯片检测方法研究[J]. 中国生物工程杂志, 2009, 29(12): 79-84.
[11] 张海棠,王自良,邓瑞广,张改平,范国英,姜金庆. 高亲和力莱克多巴胺单克隆抗体的研制及ciELISA检测方法的建立[J]. 中国生物工程杂志, 2009, 29(01): 50-55.
[12] 黄文晋, 崔晓江, 彭学贤. 抗细菌植物基因工程进展[J]. 中国生物工程杂志, 1993, 13(6): 17-19.
[13] 门大鹏. 质粒[J]. 中国生物工程杂志, 1993, 13(3): 49-50.
[14] 邓子新. 以吸水链霉菌应城变种为宿主的一系列基因克隆体系的发展[J]. 中国生物工程杂志, 1992, 12(2): 24-30.
[15] 曾以申. 农作物抗病分子生物学研究中的若干问题[J]. 中国生物工程杂志, 1990, 10(4): 32-36.