Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (9): 28-35    DOI: 10.13523/j.cb.2005026
综述     
新的药物传递系统:外泌体作为药物载体递送*
吴忧,辛林()
南昌大学第二附属医院 南昌 330006
New Drug Delivery System: Delivery of Exosomes as Drug Carriers
WU You,XIN Lin()
Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
 全文: PDF(1008 KB)   HTML
摘要:

外泌体(exosomes)是细胞分泌的囊泡,在细胞与细胞之间通信中发挥重要作用。由于其固有的长距离通信能力和出色的生物相容性而具有很大的潜力作为药物递送载体,尤其适合递送蛋白质、核酸、基因治疗剂等治疗药物。许多研究表明外泌体可以有效地将许多不同种类的货物递送至靶细胞,因此,它们常被作为药物载体用于治疗。对外泌体作为药物递送系统中面临的外泌体分离,药物装载和靶向治疗应用的进展与挑战作一介绍,以期更好为外泌体药物递送系统开发提供新思路。

关键词: 外泌体药物载体靶向治疗    
Abstract:

Exosomes are the substance that are released by most types of cells and have an important role in cell to cell communication. They also have great potential as a medicine delivery carrier, especially suitable for delivery of therapeutic drugs, such as proteins, nucleic acids and gene therapeutic agents due to the inherent long-distance communication capacity and excellent biocompatibility. Many studies show that exosome can efficiently deliver many different kinds of cargo to the target cell. Therefore, they are often used to deliver therapeutic cargo for treatment. As a result, the literature will introduce the advances and challenge facing exosomes as drug delivery systems, such as exosome isolation, drug loading and targeting therapy application, with the expectation of better delivering new ideas for the development of exosomal drug delivery systems.

Key words: Exosomes    Drug delivery    Targeted therapy
收稿日期: 2020-05-14 出版日期: 2020-10-12
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(81872480);国家自然科学基金(81760549);国家自然科学基金(81560492)
通讯作者: 辛林     E-mail: xlyxbs@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吴忧
辛林

引用本文:

吴忧,辛林. 新的药物传递系统:外泌体作为药物载体递送*[J]. 中国生物工程杂志, 2020, 40(9): 28-35.

WU You,XIN Lin. New Drug Delivery System: Delivery of Exosomes as Drug Carriers. China Biotechnology, 2020, 40(9): 28-35.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2005026        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I9/28

分离技术 具体方法 优势 缺陷 文献
超速离心 差速超速离心和密度梯度离心 金标准,获得高纯度的外泌体组分 对复杂体液提取不佳,沉淀其他囊泡、蛋白质或蛋白质-RNA聚集体,费时费力,依赖设备 [7-9]
基于尺寸大小的分离技术 超滤 操作简单、快速,设备成本低,便携性好 难以去除污染的蛋白质,影响外泌体囊泡结构 [9-10]
尺寸排阻色谱 更好的保留外泌体和其他分子完整性 需要施加重力流,较费时,回收效率不高 [11-12]
微流控技术 分离速率快,产量高,纯度好 缺乏标准化和大规模测试,目前仍处于研究阶段 [13-14]
聚合物沉淀 溶质溶解度或分散特性 使用方便,不需要专业设备,可扩展样本容量 杂蛋白质较多,难以去除聚合物,试剂昂贵 [15-16]
免疫亲和层析 免疫磁珠法 特异性高,纯度高,可收集表达特定分子的外泌体 回收效率低 [17-20]
表1  外泌体提取技术、方法和优缺点
[1] Ren L, Chen S, Li H, et al. MRI-guided liposomes for targeted tandem chemotherapy and therapeutic response prediction. Acta Biomaterialia, 2016,35:260-268.
pmid: 26873364
[2] Masood F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Materials Science and Engineering: C, 2016,60:569-578.
[3] Riley R S, Day E S. Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Nanomedicine and Nanobiotechnology, 2017,9(4):1449.
[4] Gurunathan S, Kang M H, Jeyaraj M, et al. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells, 2019,8(4):307.
[5] Lotvall J, Valadi H. Cell to cell signalling via exosomes through esRNA. Cell Adhesion & Migration, 2007,1(3):156-158.
doi: 10.4161/cam.1.3.5114 pmid: 19262134
[6] Minciacchi V R, Freeman M R, Di Vizio D. Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes. Seminars in Cell & Developmental Biology, 2015,40:41-51.
pmid: 25721812
[7] Khalyfa A, Gozal D. Exosomal miRNAs as potential biomarkers of cardiovascular risk in children. Journal of Translational Medicine, 2014,12:162.
doi: 10.1186/1479-5876-12-162 pmid: 24912806
[8] Kamerkar S, LeBleu V S, Sugimoto H, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature, 2017,546(7659):498-503.
[9] Takuma Y, Yuki T, Yoshinobu T. Possibility of exosome-based therapeutics and challenges in production of exosomes eligible for therapeutic application. Biological and Pharmaceutical Bulletin, 2018,41(6):835-842.
pmid: 29863072
[10] Théry C, Amigorena S, Raposo G, et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current Protocols in Cell Biology, 2006,3(1):22-29.
[11] Shao H, Im H, Castro C M, et al. New technologies for analysis of extracellular vesicles. Chemical Reviews, 2018,118(4):1917-1950.
[12] Taylor D D, Shah S. Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. Methods, 2015,87:3-10.
[13] Emily Z, Timothy B, Li M, et al. Strategies for isolation of exosomes. [2020-06-07]. http://cshprotocols.cshlp.org/content/2015/4/pdb.top074476.long.htm.
[14] Alvarez M L, Khosroheidari M, Kanchi Ravi R, et al. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney International, 2012,82(9):1024-1032.
pmid: 22785172
[15] Laurent M, Hong C S, Db S, et al. Isolation of biologically-active exosomes from human plasma. Journal of Immunological Methods, 2014,411:55-65.
pmid: 24952243
[16] Vaswani K, Mitchell M D, Holland O J, et al. A method for the isolation of exosomes from human and bovine milk. [2020-06-07]. https://www.hindawi.com/journals/jnme/2019/5764740/.htm.
[17] Greening D W, Xu R, Ji H, et al. A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Proteomic Profiling, 2015,1295:179-209.
[18] Wu M, Ouyang Y, Wang Z, et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proceedings of the National Academy of Sciences of the United States of America, 2017,114(40):10584-10589.
[19] Liu C, Guo J, Tian F, et al. Field-free isolation of exosomes from extracellular vesicles by microfluidic viscoelastic flows. Acs Nano, 2017,11(7):6968-6976.
doi: 10.1021/acsnano.7b02277 pmid: 28679045
[20] Lewis G D, Metcalf T G. Polyethylene glycol precipitation for recovery of pathogenic viruses, including hepatitis A virus and human rotavirus, from oyster, water, and sediment samples. Applied and Environmental Microbiology, 1988,54(8):1983-1988.
[21] Martins T S, Catita J, Rosa I M, et al. Exosome isolation from distinct biofluids using precipitation and column-based approaches. PLoS One, 2018,13(6):e0198820.
[22] Lane R E, Korbie D, Trau M, et al. Purification protocols for extracellular vesicles. Extracellular Vesicles Methods and Protocols, 2017,1660:111-130.
[23] Brow T J, David G W, Ra M, et al. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods, 2012,56(2):293-304.
doi: 10.1016/j.ymeth.2012.01.002 pmid: 22285593
[24] Chen B Y, Sung C W H, Chen C, et al. Advances in exosomes technology. Clinica Chimica Acta, 2019,493:14-19.
[25] Chen C, Lin B R, Hsu M Y, et al. Paper-based devices for isolation and characterization of extracellular vesicles. Journal of Visualized Experiments, 2015, (98):52722.
[26] Sun D, Zhuang X, Xiang X, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Molecular Therapy, 2010,18(9):1606-1614.
pmid: 20571541
[27] Agrawal A K, Aqil F, Jeyabalan J, et al. Milk-derived exosomes for oral delivery of paclitaxel. Nanomedicine: Nanotechnology, Biology, And Medicine, 2017,13(5):1627-1636.
[28] Alvarez-Erviti L, Seow Y, Yin H, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature Biotechnology, 2011,29(4):341-345.
pmid: 21423189
[29] Hood J L, Scott M J, Wickline S A. Maximizing exosome colloidal stability following electroporation. Analytical Biochemistry, 2014,448:41-49.
doi: 10.1016/j.ab.2013.12.001 pmid: 24333249
[30] Lamichhane T N, Raiker R S, Jay S M. Exogenous DNA loading into extracellular vesicles via electroporation is size-dependent and enables limited gene delivery. Molecular Pharmaceutics, 2015,12(10):3650-3657.
doi: 10.1021/acs.molpharmaceut.5b00364 pmid: 26376343
[31] Kooijmans S A A, Stremersch S, Braeckmans K, et al. Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. Journal of Controlled Release, 2013,172(1):229-238.
doi: 10.1016/j.jconrel.2013.08.014 pmid: 23994516
[32] Shtam T A, Kovalev R A, Varfolomeeva E Y, et al. Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Communication and Signaling, 2013,11:88.
doi: 10.1186/1478-811X-11-88 pmid: 24245560
[33] Familtseva A, Jeremic N, Tyagi S C. Exosomes: cell-created drug delivery systems. Molecular and Cellular Biochemistry, 2019,459(1-2):1-6.
doi: 10.1007/s11010-019-03545-4 pmid: 31073888
[34] Lv L H, Wan Y L, Lin Y, et al. Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. The Journal of Biological Chemistry, 2012,287(19):15874-15885.
doi: 10.1074/jbc.M112.340588 pmid: 22396543
[35] Batrakova E V, Kim M S. Using exosomes, naturally-equipped nanocarriers, for drug delivery. Journal of Controlled Release, 2015,219:396-405.
doi: 10.1016/j.jconrel.2015.07.030 pmid: 26241750
[36] Wen Z, Mai Z, Zhu X, et al. Mesenchymal stem cell-derived exosomes ameliorate cardiomyocyte apoptosis in hypoxic conditions through microRNA144 by targeting the PTEN/AKT pathway. Stem Cell Research & Therapy, 2020,11(1):36.
doi: 10.1186/s13287-020-1563-8 pmid: 31973741
[37] Zhang H, Bai M, Deng T, et al. Cell-derived microvesicles mediate the delivery of miR-29a/c to suppress angiogenesis in gastric carcinoma. Cancer Letters, 2016,375(2):331-339.
pmid: 27000664
[38] Wang X, Zhang H, Bai M, et al. Exosomes serve as nanoparticles to deliver anti-miR-214 to reverse chemoresistance to cisplatin in gastric cancer. Molecular and Therapy, 2018,26(3):774-783.
[39] Yim N, Choi C. Extracellular vesicles as novel carriers for therapeutic molecules. Bmb Reports, 2016,49(11):585-586.
doi: 10.5483/bmbrep.2016.49.11.174 pmid: 27733233
[40] Lin Y, Wu J, Gu W, et al. Exosome-liposome hybrid nanoparticles deliver CRISPR/Cas9 system in MSCs. Advanced Science, 2018,5(4):1700611.
pmid: 29721412
[41] Nedergaard M K, Hedegaard C J, Poulsen H S. Targeting the epidermal growth factor receptor in solid tumor malignancies. BioDrugs: Gene Therapy, 2012,26(2):83-99.
[42] Ohno S I, Takanashi M, Sudo K, et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Molecular Therapy, 2013,21(1):185-191.
pmid: 23032975
[43] Bellavia D, Raimondo S, Calabrese G, et al. Interleukin 3- receptor targeted exosomes inhibit and chronic myelogenous leukemia cell growth. Theranostics, 2017,7(5):1333-1345.
pmid: 28435469
[44] Lou G, Chen L, Xia C, et al. MiR-199a-modified exosomes from adipose tissue-derived mesenchymal stem cells improve hepatocellular carcinoma chemosensitivity through mTOR pathway. Journal of Experimental & Clinical Cancer Research, 2020,39(1):4.
doi: 10.1186/s13046-019-1512-5 pmid: 31898515
[45] Rana S, Yue S, Stadel D, et al. Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection. The International Journal of Biochemistry & Cell Biology, 2012,44(9):1574-1584.
doi: 10.1016/j.biocel.2012.06.018 pmid: 22728313
[46] Karjoo Z, Chen X, Hatefi A. Progress and problems with the use of suicide genes for targeted cancer therapy. Advanced Drug Delivery Reviews, 2016,99(Pt A):113-128.
doi: 10.1016/j.addr.2015.05.009 pmid: 26004498
[47] Sekar T V, Foygel K, Ilovich O, et al. Noninvasive theranostic imaging of HSV1-sr39TK-NTR/GCV-CB1954 dual-prodrug therapy in metastatic lung lesions of MDA-MB-231 triple negative breast cancer in mice. Theranostics, 2014,4(5):460-474.
pmid: 24669276
[48] Sekar T V, Foygel K, Willmann J K, et al. Dual-therapeutic reporter genes fusion for enhanced cancer gene therapy and imaging. Gene Therapy, 2013,20(5):529-537.
doi: 10.1038/gt.2012.66 pmid: 22914496
[49] Kanada M, Kim B D, Hardy J W, et al. Microvesicle-mediated delivery of minicircle DNA results in effective gene-directed enzyme prodrug cancer therapy. Molecular Cancer Therapeutics, 2019,18(12):2331-2342.
doi: 10.1158/1535-7163.MCT-19-0299 pmid: 31451563
[50] Salvati A, Pitek A S, Monopoli M P, et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nature Nanotechnology, 2013,8(2):137-143.
pmid: 23334168
[51] Xie X, Wu H, Li M, et al. Progress in the application of exosomes as therapeutic vectors in tumor-targeted therapy. Cytotherapy, 2019,21(5):509-524.
pmid: 30686589
[52] Sharif S, Ghahremani M H, Soleimani M. Delivery of exogenous miR-124 to glioblastoma multiform cells by Wharton’s Jelly mesenchymal stem cells decreases cell proliferation and migration, and confers chemosensitivity. Stem Cell Reviews and Reports, 2018,14(2):236-246.
doi: 10.1007/s12015-017-9788-3 pmid: 29185191
[53] Zhao H, Yang L, Baddour J, et al. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. Elife, 2016,5:10250.
[54] Yong T, Zhang X, Bie N, et al. Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. Nature Communications, 2019,10(1):3838.
pmid: 31444335
[55] Mashouri L, Yousefi H, Aref A R, et al. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Molecular Cancer, 2019,18(1):75.
doi: 10.1186/s12943-019-0991-5 pmid: 30940145
[1] 孙莉萍,徐宛,李孟伟,曾茹,翁建. 孢粉素的物理化学性质和生物医学应用研究进展*[J]. 中国生物工程杂志, 2021, 41(9): 92-100.
[2] 李佳欣,张正,刘赫,杨青,吕成志,杨君. 角蛋白载药纳米颗粒的制备及药物可控释放性能研究*[J]. 中国生物工程杂志, 2021, 41(8): 8-16.
[3] 王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.
[4] 李开秀,司维. 间充质干细胞来源的外泌体治疗炎症性肠病研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 66-73.
[5] 吕慧中,赵晨辰,朱链,许娜. 外泌体靶向递药在肿瘤治疗中的进展[J]. 中国生物工程杂志, 2021, 41(5): 79-86.
[6] 邱金戈,刘德武,孙宝丽,李耀坤,郭勇庆,邓铭,柳广斌. 动物外泌体分离方法的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 36-42.
[7] 毛慧,吕玉华,朱丽慧,林月霞,廖荣荣. 外泌体在病毒感染诊断和治疗中的作用研究 *[J]. 中国生物工程杂志, 2020, 40(3): 104-110.
[8] 吴佳韩,江霖,陈婷,孙加节,张永亮,习欠云. 脂肪组织外泌体与机体其他组织互作研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 111-116.
[9] 杭海英,刘春春,任丹丹. 流式细胞术的发展、应用及前景 *[J]. 中国生物工程杂志, 2019, 39(9): 68-83.
[10] 刘艳,戴鹏,朱运峰. 外泌体作为肿瘤标志物的研究进展 *[J]. 中国生物工程杂志, 2019, 39(8): 74-79.
[11] 刘艳,戴鹏,朱运峰. 外泌体与自噬体相互关系研究进展 *[J]. 中国生物工程杂志, 2019, 39(6): 78-83.
[12] 潘晓倩,熊向源,龚妍春,李资玲,李玉萍. 口服抗癌药物纳米载体的研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 65-73.
[13] 元小宁, 朱运峰. 外泌体(Exosome)及其在肿瘤调控中的作用[J]. 中国生物工程杂志, 2013, 33(8): 111-117.
[14] 陈宽婷, 姚俊, 阮文辉, 魏钦俊, 鲁雅洁, 曹新. 新型γ-聚谷氨酸自组装纳米胶束的制备及用于蛋白载体的研究[J]. 中国生物工程杂志, 2013, 33(4): 101-105.
[15] 李炳娟, 李玉霞, 李北平, 凌焱, 周围, 李伟东, 林海龙, 梁龙, 刘刚, 张景海, 陈惠鹏. 应用改构的炭疽毒素作为靶向肿瘤细胞的药物递送系统及其效果评价[J]. 中国生物工程杂志, 2013, 33(4): 1-8.