Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (9): 43-51    DOI: 10.13523/j.cb.2005024
综述     
铜绿假单胞菌中鼠李糖脂生物合成的研究进展*
段海荣1,3,魏赛金1,3,黎循航2,3,**()
1江西农业大学生物科学与工程学院 南昌 330045
2豫章师范学院 南昌 330103
3江西农业大学 应用微生物研究所 南昌 330045
Advances in Rhamnolipid Biosynthesis by Pseudomonas aeruginosa Research
DUAN Hai-rong1,3,WEI Sai-jin1,3,LI Xun-hang2,3,**()
1 College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang 330045,China
2 Yuzhang Normal University, Nanchang 330103,China
3 Institute of Applied Microbiology Jiangxi Agricultural University, Nanchang 330045,China
 全文: PDF(1246 KB)   HTML
摘要:

鼠李糖脂因其具有环境友好和卓越的物理化学特性,而有望成为化学合成表面活性剂的替代物。近年来鼠李糖脂得到了广泛的研究,其目的是利用低价的可再生资源进行大规模生产,但目前的研究成果仍不足以选育出更具商业竞争力的鼠李糖脂过量合成菌株。为此,进一步理解鼠李糖脂生物合成的复杂基因调控网络,探索降低生产成本的发酵工艺势在必行。综述了铜绿假单胞菌中鼠李糖脂的生物合成途径、群体感应对主要基因的调控、鼠李糖脂在生物膜形成中所发挥的作用,以及发酵优化对鼠李糖脂产量的影响。有助于加深对鼠李糖脂生物合成的认识,为提高鼠李糖脂产量提供重要参考信息。

关键词: 鼠李糖脂生物合成群体感应生物膜铜绿假单胞菌    
Abstract:

Rhamnolipids have emerged as a very promising alternatives to their chemo-synthetic counterparts, due to their environmental compatibility and the remarkable physicochemical properties. In recent years, rhamnolipids have been intensively studied, aiming to large-scale improve the production of rhamnolipids based on low-cost renewable resources. However, the current findings are insufficient to screen over-producing rhamnolipids strains with competitive commercial values. Therefore, it is imperative to in-depth understand the sophisticated gene regulatory network of rhamnolipids biosynthesis and explore the fermentation technology to lower the costs. The biosynthetic pathways and the main gene regulatory factors by quorum sensing involved in rhamnolipids production within Pseudomonas aeruginosa are presented, followed by the role of in biofilm formation, and the effect of fermentation optimization on rhamnolipids yield. It is helpful to enhance our understanding on rhamnolipids biosynthesis and provide important reference information for improving the yield of rhamnolipids.

Key words: Rhamnolipid    Biosynthesis    Quorum sensing    Biofilm    Pseudomonas aeruginosa
收稿日期: 2020-05-13 出版日期: 2020-10-12
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(31460469)
通讯作者: 黎循航     E-mail: li_xunh@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
段海荣
魏赛金
黎循航

引用本文:

段海荣,魏赛金,黎循航. 铜绿假单胞菌中鼠李糖脂生物合成的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 43-51.

DUAN Hai-rong,WEI Sai-jin,LI Xun-hang. Advances in Rhamnolipid Biosynthesis by Pseudomonas aeruginosa Research. China Biotechnology, 2020, 40(9): 43-51.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2005024        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I9/43

图1  铜绿假单胞菌鼠李糖脂生物合成途径
图2  铜绿假单胞菌的群体感应系统
[1] Henkel M, Hausmann R. Diversity and classification of microbial surfactants//Biobased surfactants synthesis, properties, and applications. 2nd ed. Springer: AOCS Press, 2019: 41-63.
[2] Rudden M, Tsaousi K, Marchant R, et al. Development and validation of an ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for the quantitative determination of rhamnolipid congeners. Applied Microbiology & Biotechnology, 2015,99(21):9177-9187.
doi: 10.1007/s00253-015-6837-1 pmid: 26272088
[3] Bergstrom S, Theorell H, Davide H, et al. On a metabolic product of Ps. pyocyanea, pyolipic acid, active against Mycobacterium tuberculosis. Arkiv For Kemi Mineralogi Och Geologi, 1946,23(4-5):1-12.
[4] Bergstrom S, Theorell H, Davide H, et al. Pyolipic acid, A metabolic product of Pseudomonas pyocyanea active against Mycobacterium tuberculosis. Archives of Biochemistry, 1946,10(1):165-166.
[5] Jarvis F G, Johnson M J. Aglycolipide produced by Pseudomonas aeuginosa. Jam Chem Soc, 1949,71(12):41124-41269.
[6] Edwards J R, Hayashi J A. Structure of a rhamnolipid from Pseudomonas aeruginosa. Archives of Biochemistry and Biophysics, 1965,111(2):415-421.
[7] Chong H Q, Li Q X. Microbial production of rhamnolipids: opportunities, challenges and strategies. Microbial Cell Factories, 2017,16(1):1-12.
pmid: 28049473
[8] Sakthipriya N, Doble M, Sangwai J S. Biosurfactant from Pseudomonas species with waxes as carbon source:Their production, modeling and properties. Journal of Industrial and Engineering Chemistry, 2015,31:100-111.
[9] Ahmad A M, Franois L, Eric E. Rhamnolipids: diversity of structures, microbial origins and roles. Applied Microbiology Biotechnology, 2010,86(5):1323-1336.
pmid: 20336292
[10] Dong H, Xia W J, Dong H J, et al. Rhamnolipids produced by indigenous Acinetobacter junii from petroleum reservoir and its potential in enhanced oil recovery. Frontiers in Microbiology, 2016,7:1710.
[11] Lee M J, Kim M K, Vancanneyt M, et al. Tetragenococcus koreensis sp. Nov., a novel rhamnolipid producing bacterium. International Journal of Systematic and Evolutionary Microbiology, 2005,55(4):1409-1413.
[12] Gaur V K, Bajaj A, Regar R K, et al. Rhamnolipid from a Lysinibacillus sphaericus strain IITR51 and its potential application for dissolution of hydrophobic pesticides. Bioresource Technology, 2019,272:19-25.
pmid: 30296609
[13] Abeer Mohammed A B, Ahmed A T, Nihal M E. Production of new rhamnolipids RhaC16-C16 by Burkholderia sp. through biodegradation of diesel and biodiesel. Beni-Suef University Journal of Basic and Applied Sciences, 2018,7(4):492-498.
[14] Zhao F, Shi R J, Ma F, et al. Oxygen effects on rhamnolipids production by Pseudomonas aeruginosa. Microbial Cell Factories, 2018,17(1):39.
doi: 10.1186/s12934-018-0888-9 pmid: 29523151
[15] Kumar R, Das A J. Quorum sensing: Its role in rhamnolipid production quorum sensing: Its role in rhamnolipid production//Rhamnolipid biosurfactant. Singapore: Springer, 2018: 125-135.
[16] Hruzovu K, Patel A, Masuk J, et al. A novel approach for the production of green biosurfactant from Pseudomonas aeruginosa using renewable forest biomass. Science of The Total Environment, 2020,711:135099.
pmid: 32000342
[17] Sodagari M, Lu-Kwang J. Addressing the critical challenge for rhamnolipid production: Discontinued synthesis in extended stationary phase. Process Biochemistry, 2020,91:83-89.
[18] Burger M M, Glaser L, Burton R M. The enzymatic synthesis of a rhamnose-containing glycolipid by extracts of Pseudomonas aeruginosa. Journal of Biological Chemistry, 1963,238(8):2595-2602.
[19] 黎循航, 张言周, 魏志文, 等. 环脂肽的研究进展. 中国酿造, 2016,35(12):5-11.
Li X H, Zhang Y Z, Wei Z W, et al. Recent advances in cyclic lipopeptide. China Brewing, 2016,35(12):5-11.
[20] Bahia F M, de Almeida G C, de Andrade L P, et al. Rhamnolipids production from sucrose by engineered Saccharomyces cerevisiae. Scientific Reports, 2018,8(1):2905.
doi: 10.1038/s41598-018-21230-2 pmid: 29440668
[21] Dobler L, Vilela L F, Almeida R V, et al. Rhamnolipids in perspective: Gene regulatory pathways, metabolic engineering, production and technological forecasting. New Biotechnology, 2016,33(1):123-135.
[22] Kubicki S, Bollinger A, Katzke N, et al. Marine biosurfactants: Biosynthesis, structural diversity and biotechnological applications. Marine Drugs, 2019,17(7):408.
[23] Rodrigo S R, Alyson G P, Bianca C N, et al. Gene regulation of rhamnolipid production in Pseudomonas aeruginosa:A review. Bioresource Technology, 2011,102(11):6377-6384.
[24] Pham T H, Webb J S, Rehm B H A. The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. Microbiology, 2004,150(10):3405-3413.
[25] Rehm B H, Mitsky T A, Steinbuchel A. Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid PHA and rhamnolipid synthesis by pseudomonads: establishment of the transacylase PhaG-mediated pathway for PHA biosynthesis in Escherichia coli. Applied and Environmental Microbiology, 2001,67(7):3102-3109.
doi: 10.1128/AEM.67.7.3102-3109.2001 pmid: 11425728
[26] Deziel E, Lepine F, Milot S, et al. Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(5):1339-1344.
[27] Rahim R, Ochsner U A, Olvera C, et al. Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyl transferase 2, an enzyme. responsible for di-rhamnolipid biosynthesis. Molecular Microbiology, 2001,40(3):708-718.
pmid: 11359576
[28] Ochsner U A, Reiser J, Fiechter A, et al. Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterologous hosts. Applied and Environmental Microbiology, 1995,61(9):3503-3506.
[29] Wittgens A, Kovacic F, Muller M M, et al. Novel insights into biosynthesis and uptake of rhamnolipids and their precursors. Applied Microbiology and Biotechnology, 2017,101(7):2865-2878.
pmid: 27988798
[30] Nelson K E, Weinel C, Paulsen I T, et al. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environmental microbiology, 2002,4(12):799-808.
[31] Decho A W, Norman R S, Visscher P T. Quorum sensing in natural environments: emerging views from microbial mats. Trends in Microbiology, 2010,18(2):73-80.
pmid: 20060299
[32] Asif M, Imran M. Effect of quorum sensing inhibitor agents against Pseudomonas aeruginosa. Russian Journal of Bioorganic Chemistry, 2020,46(2):149-164.
[33] Momen A, Moustafa S, Hisham A. An innovative role for tenoxicam as a quorum sensing inhibitor in Pseudomonas aeruginosa. Archives of Microbiology, 2020,202(3):555-565.
doi: 10.1007/s00203-019-01771-4 pmid: 31732766
[34] Papenfort K, Bassler B L. Quorum sensing signal-response systems in Gram-negative bacteria(Review). Nature Reviews Microbiology, 2016,14(9):576-588.
doi: 10.1038/nrmicro.2016.89 pmid: 27510864
[35] Kareb O, Aider M. Quorum sensing circuits in the communicating mechanisms of bacteria and its implication in the biosynthesis of bacteriocins by lactic acid bacteria: A review. Probiotics And Antimicrobial Proteins, 2020,12(1):5-17.
pmid: 31104210
[36] Zeng J M, Zhang N, Huang B, et al. Mechanism of azithromycin inhibition of HSL synthesis in Pseudomonas aeruginosa. Scientific Reports, 2016,6(1):24299.
[37] Muller M M, Hermann B, Syldatk C, et al. Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems. Applied Microbiology and Biotechnology, 2010,87(1):167-174.
doi: 10.1007/s00253-010-2513-7 pmid: 20217074
[38] Abbas H A, Shaldam M A, Eldamasi D. Curtailing Quorum Sensing in Pseudomonas aeruginosa by sitagliptin. Current Microbiology, 2020,77(6):1051-1060.
doi: 10.1007/s00284-020-01909-4 pmid: 32020464
[39] Hernando-Amado S, Alcalde-Rico M, Gil-Gil T, et al. Naringenin inhibition of the Pseudomonas aeruginosa quorum sensing response is based on its time-dependent competition with N-(3-oxo-dodecanoyl)-L-homoserine lactone for LasR binding. Frontiers in Molecular Biosciences, 2020,7:25.
pmid: 32181260
[40] Zhang B, Ren L L, Xu D Y, et al. Directed evolution of RhlI to generate new and increased quorum sensing signal molecule catalytic activities. Enzyme & Microbial Technology, 2020,134:109475.
pmid: 32044022
[41] Wei Q, Ma L Z. Biofilm matrix and its regulation in Pseudomonas aeruginosa. Int J Mol Sci, 2013,14(10):20983-21005.
[42] Soukarieh F, Liu R L, Romero M, et al. Hit identification of new potent PqsR antagonists as inhibitors of quorum sensing in planktonic and biofilm grown Pseudomonas aeruginosa. Frontiers in Chemistry, 2020,8:204.
doi: 10.3389/fchem.2020.00204 pmid: 32432073
[43] Cao H, Krishnan G, Goumnerov B, et al. A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2001,98(25):14613-14618.
[44] Syed A K S, Michelle R, Thomas J S, et al. Natural quorum sensing inhibitors effectively downregulate gene expression of Pseudomonas aeruginosa virulence factors. Applied Microbiology ang Biotechnology, 2019,103(8):3521-3535.
[45] Lee J, Wu J, Deng Y, et al. A cell-cell communication signal integrates quorum sensing and stress response. Nature Chem Biol, 2013,9(6):339-343.
[46] Lee J, Zhang L H. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell, 2015,6(1):26-41.
[47] Hoffman L R, Kulasekara H D, Emerson J, et al. Pseudomonas aeruginosa lasR mutants are associated with cystic fibrosis lung disease progression. Journal of Cystic Fibrosis, 2009,8(1):66-70.
doi: 10.1016/j.jcf.2008.09.006 pmid: 18974024
[48] Poosarla V G, Wood T L, Zhu L, et al. Dispersal and inhibitory roles of mannose, 2-deoxy-D-glucose and N-acetylgalactosaminidase on the biofilm of Desulfovibrio vulgaris. Environmental Microbiology Reports, 2017,9(6):779-787.
[49] Zhao X H, Yu X, Ding T. Quorum-sensing regulation of antimicrobial resistance in bacteria. Microorganisms, 2020,8(3):425.
[50] Toyofuku M, Inaba T, Kiyokawa T. Environmental factors that shape biofilm formation. Bioscience, Biotechnology, and Biochemistry, 2016,80(1):1-6.
pmid: 25754034
[51] Kostakioti M, Hadjifrangiskou M, Hultgren S J. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postanti biotic era. Cold Spring Harbor Perspectives in Medicine, 2013,3(4):1-23.
[52] Davies D. Understanding biofilm resistance to antibacterial agents. Nature Reviews Drug Discovery, 2003,2(2):114-122.
pmid: 12563302
[53] Sun Y, Li Y, Luo Q, et al. LuxS/AI-2 Quorum Sensing System in Edwardsiella piscicida promotes biofilm formation and pathogenicity. Infect Immun, 2020,88(5):e00907-19.
pmid: 32071069
[54] Mor R, Alex S. Biofilm formation and partial biodegradation of polystyrene by the actinomycete Rhodococcus ruber. Biodegradation, 2008,19(6):851-858.
doi: 10.1007/s10532-008-9188-0
[55] Sanin S L, Sanin F D, Bryers J D. Effect of starvation on the adhesive properties of xenobiotic degrading bacteria. Process Biochemistry, 2003,38(6):909-914.
[56] Nickzad A, Deziel E. The involvement of rhamnolipids in microbial cell adhesion and biofilm development:An approach for control. Lett Appl Microbiology, 2014,58(5):447-453.
[57] Díaz De Rienzo M A, Stevenson P S, Marchant R, et al. Pseudomonas aeruginosa biofilm disruption using microbial surfactants. Journal of Applied Microbiology, 2016,120(4):868-876.
pmid: 26742560
[58] Raya A, Sodagari M, Pinzon N M, et al. Effects of rhamnolipids and shear on initial attachment of Pseudomonas aeruginosa PAO1 in glass flow chambers. Environmental Science and Pollution Research International, 2010,17(9):1529-1538.
doi: 10.1007/s11356-010-0339-6 pmid: 20509051
[59] Souza J G S, Bertolini M, Costa R C, et al. Targeting pathogenic biofilms: Newly developed superhydrophobic coating favors a host-compatible microbial profile on the titanium surface(article). ACS Applied Materials and Interfaces, 2020,12(9):10118-10129.
doi: 10.1021/acsami.9b22741 pmid: 32049483
[60] Zhang Y, Jiang J, Zhao Q, et al. Accelerating anodic biofilms formation and electron transfer in microbial fuel cells: role of anionic biosurfactants and mechanism. Bioelectrochemistry, 2017,117:48-56.
doi: 10.1016/j.bioelechem.2017.06.002
[61] Aleksic I, Petkovic M, Jovanovic M, et al. Anti-biofilm properties of bacterial di-rhamnolipids and their semi-synthetic amide derivatives. Frontiers in Microbiology, 2017,8:2454.
doi: 10.3389/fmicb.2017.02454 pmid: 29276509
[62] Jovanovic M, Radivojevic J, O’Connor K, et al. Rhamnolipid inspired lipopeptides effective in preventing adhesion and biofilm formation of Candida albicans(article). Bioorganic Chemistry, 2019,87:209-217.
doi: 10.1016/j.bioorg.2019.03.023 pmid: 30901676
[63] De Rienzo M A, Martin P J. Effect of Mono and di- rhamnolipids on biofilms pre- formed by Bacillus subtilis BBK006. Curr Microbiol, 2016,73(2):183-189.
doi: 10.1007/s00284-016-1046-4 pmid: 27113589
[64] Li X H, Zhang Y Z, Wei Z W, et al. Antifungal activity of isolated Bacillus amyloliquefaciens SYBC H47 for the biocontrol of peach gummosis. PLoS One, 2016,11(9):1-22.
[65] Wood T L, Gong T, Zhu , L , et al. Rhamnolipids from Pseudomonas aeruginosa disperse the biofilms of sulfate-reducing bacteria. Biofilms and Microbiomes, 2018,4(1):22.
[66] Singh N, Pemmaraju S C, Pruthi P A, et al. Candida biofilm disrupting ability of di-rhamnolipid (RL-2) produced from Pseudomonas aeruginosa DSVP20. Appl Biochem Biotechnol, 2013,169(8):2374-2391.
doi: 10.1007/s12010-013-0149-7 pmid: 23446981
[67] Silva S S, Carvalho J W P, Aires C P, et al. Disruption of Staphylococcus aureus biofilms using rhamnolipid biosurfactants. Journal of Dairy Science, 2017,100(10):7864-7873.
doi: 10.3168/jds.2017-13012 pmid: 28822551
[68] Randhawa K K S, Rahman P K S M. Rhamnolipid biosurfactants-past, present, and future scenario of global market. Frontiers in Microbiology, 2014,5:454.
doi: 10.3389/fmicb.2014.00454 pmid: 25228898
[69] Ehinmitola E O, Aransiola E F, Adeagbo O P. Comparative study of various carbon sources on rhamnolipid production(Article). South African Journal of Chemical Engineering, 2018,26:42-48.
doi: 10.1016/j.sajce.2018.09.001
[70] George S, J ayachandran K. Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa. Journal of Applied Microbiology, 2013,114(2):373-383.
doi: 10.1111/jam.12069
[71] Cirstea D M, Stefanescu M, Pahontu J M, et al. Use of some carbon sources by Pseudomonas strains for synthesizing polyhydroxyalkanoates and/or rhamnolipids. Romanian Biotechnological Letters, 2014,19(3):9400-9408.
[72] Araújo J, Rocha J, Filho M O, et al. Rhamnolipids Biosurfactants from Pseudomonas aeruginosa:A review. Biosci Biotech Res Asia, 2018,15(4):767-781.
doi: 10.13005/bbra/
[73] Wadekar S D, Patil S V, Sandeep K, et al. Study of glycerol residue as a carbon source for production of rhamnolipids by Pseudomonas aeruginosa ATCC 10145. Tenside Surfactants Detergents, 2011,48(1):16-22.
[74] Ozdal M, Gurkok S, Ozdal O G. Optimization of rhamnolipid production by Pseudomonas aeruginosa OG1 using waste frying oil and chicken feather peptone. 3 Biotech, 2017,7(2):117.
doi: 10.1007/s13205-017-0774-x pmid: 28567629
[75] Henkel M, Muller M M, Kugler J H, et al. Rhamnolipids as biosurfactants from renewable resources: Concepts for next-generation rhamnolipid production. Process Biochemistry, 2012,47(8):1207-1219.
doi: 10.1016/j.procbio.2012.04.018
[76] Gudina E J, Rodrigues A I, de Freitas V, et al. Valorization of agro-industrial wastes towards the production of rhamnolipids. Bioresource Technology, 2016,212:144-150.
doi: 10.1016/j.biortech.2016.04.027 pmid: 27092993
[77] Prabu R, Kuila A, Ravishankar R, et al. Microbial rhamnolipid production in wheat straw hydrolysate supplemented with basic salts. RSC Advances, 2015,5(64):51642-51649.
doi: 10.1039/C5RA05800G
[78] Raza Z A, Khan M S, Khalid Z M, et al. Production kinetics and tensioactive characteristics of biosurfactant from a Pseudomonas aeruginosa mutant grown on waste frying oils. Biotechnology Letters, 2006,28(20):1623-1631.
doi: 10.1007/s10529-006-9134-3
[79] Tan Y N, Li Q X. Microbial production of rhamnolipids using sugars as carbon sources. Microbial Cell Factories, 2018,17(1):89.
doi: 10.1186/s12934-018-0938-3 pmid: 29884194
[80] Li Q X. Rhamnolipid synthesis and production with diverse resources. Frontiers of Chemical Science and Engineering, 2017,11(1):27-36.
doi: 10.1007/s11705-016-1607-x
[81] Santos A S D, Pereira N, Freire D M G. Strategies for improved rhamnolipid production by Pseudomonas aeruginosa PA1. Peer J, 2016,4:e2078.
doi: 10.7717/peerj.2078 pmid: 27257553
[82] Reis R S, Pereira A G, Neves B C, et al. Gene regulation of rhamnolipid production in Pseudomonas aeruginosa:A review. Bioresource Technology, 2011,102(11):6377-6384.
doi: 10.1016/j.biortech.2011.03.074
[83] Patil S, Pendse A, Aruna K. Studies on optimization of biosurfactant production by Pseudomonas aeruginosa F23 isolated from oil contaminated soil sample. International Journal of Current Biotechnology, 2014,2(4):20-30.
[84] Abbasi H, Hamedi M M, Lotfabad T B, et al. Biosurfactant-producing bacterium, Pseudomonas aeruginosa MA01 isolated from spoiled apples: physicochemical and structural characteristics of isolated biosurfactant. Journal of Bioscience Bioengineering, 2012,113(2):211-219.
doi: 10.1016/j.jbiosc.2011.10.002 pmid: 22036074
[85] Martínez-Trujillo M A, Membrillo Venegas I, Vigueras-Carmona S, et al. Optimization of bacterial biosurfactant production. Revista Mexicana De Ingenieria Quimica, 2015,14(2):355-362.
[86] Onwosi C, Odibo F. Use of response surface design in the optimization of starter cultures for enhanced rhamnolipid production by Pseudomonas nitroreducens. African Journal of Biotechnology, 2013,12(19):2611-2617.
[87] Nicolo M S A, Cambria M G A, Impallomeni G B, et al. Carbon source effects on the mono/dirhamnolipid ratio produced by Pseudomonas aeruginosa L05, a new human respiratory isolate(article). New Biotechnology, 2017,39(PtA):36-41.
doi: 10.1016/j.nbt.2017.05.013
[1] 张恒,刘慧燕,潘琳,王红燕,李晓芳,王彤,方海田. 生物法合成γ-氨基丁酸的研究策略*[J]. 中国生物工程杂志, 2021, 41(8): 110-119.
[2] 邵映芝,车鉴,程驰,江志阳,薛闯. 分子生物学方法提高电活性微生物胞外电子传递效率的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 50-59.
[3] 苗轶男,李敬知,王帅,李春,王颖. 萜烯生物合成中关键酶的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 60-70.
[4] 李冰,张传波,宋凯,卢文玉. 生物合成稀有人参皂苷的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 71-88.
[5] 翟君叶,成旭,孙泽敏,李春,吕波. 毛蕊花糖苷的生物合成研究进展[J]. 中国生物工程杂志, 2021, 41(5): 94-104.
[6] 郑义,郭世英,隋凤翔,杨骐羽,卫雅萱,李晓岩. 群体感应系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(11): 100-109.
[7] 王光路, 王梦园, 周忆菲, 马科, 张帆, 杨雪鹏. 吡咯喹啉醌生物合成研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 103-113.
[8] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[9] 刘啸尘, 范代娣, 杨帆, 武占省. 人参皂苷化合物生物合成进展 *[J]. 中国生物工程杂志, 2021, 41(1): 80-93.
[10] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[11] 邓廷山,武国干,孙宇,唐雪明. 苯乳酸生物合成的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 62-68.
[12] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[13] 薛艳婷,吴胜波,徐程杨,袁博鑫,杨书鹃,刘家亨,乔建军,朱宏吉. 群体感应在动态代谢调控中的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 74-83.
[14] 刘金丛,刘雪,於洪建,赵广荣. 微生物合成根皮素及其糖苷研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 76-84.
[15] 欧梦莹,王晓政,林双君,关统伟,林宜锦. 链黑菌素研究进展 *[J]. 中国生物工程杂志, 2019, 39(7): 100-107.