Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (6): 100-105    DOI: 10.13523/j.cb.2001053
综述     
筛选微生物降解木质纤维素的研究进展
张野,王吉平(),苏天明,何铁光,王瑾,曾向阳
广西壮族自治区农业科学院农业资源与环境研究所 南宁 530007
Research Progress on Degradation of Lignocellulosic Biomass by Screening Microorganisms
ZHANG Ye,WANG Ji-ping(),SU Tian-ming,HE Tie-guang,WANG Jin,ZENG Xiang-yang
Agricultural Resource and Environment Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
 全文: PDF(413 KB)   HTML
摘要:

木质纤维素资源是自然界中含量丰富的可再生资源,利用微生物降解木质纤维素是一种重要的策略。在综合国内外对木质纤维素降解微生物的筛选方法和研究策略的基础上,从单一菌株、复合微生物菌系和组学技术三个方面对筛选微生物降解木质纤维素进行了总结和分析,阐述了各个策略的优势特点和应用价值,即单一菌株易于培养但降解能力较低,复合菌系降解能力强但传代稳定性较差,组学技术能够更好的解释微生物降解木质纤维素的机理,为筛选木质纤维素降解微生物提供一定的指导。同时提出使用合成生物学的策略进行相应微生物的筛选,旨在为筛选高效降解木质纤维素的微生物提供一定的参考。

关键词: 单一菌株复合菌系降解木质纤维素组学技术    
Abstract:

Lignocellulosic resources are abundant renewable resources in nature, and the degradation of lignocellulosic by microorganisms is an important strategy. Based on the study of screening methods and research strategies of lignocellulosic degradation microorganisms all around the world, the advantages, characteristics and application value of lignocellulose degradation by microorganism are summarized and analyzed from single strain, microbial consortium and omics technology: single strain is easy to cultivate but lack of strong degradation ability. Microbial consortium is good at lignocellulose degradation but has poor subculture stability. The omics technology can better explain the mechanism of microbial degradation of lignocellulose, and provide good guidance for screening lignocellulose degradation microorganisms. The strategy of synthetic biology is proposed for screening the Lignocellulose degrading microorganisms, in order to provide some reference for screening the microorganisms which can degrade lignocellulose efficiently.

Key words: Single strain    Microbial consortium    Degradation of lignocellulose    Omics technology
收稿日期: 2020-01-17 出版日期: 2020-06-23
ZTFLH:  Q819  
通讯作者: 王吉平     E-mail: jpwang0110@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张野
王吉平
苏天明
何铁光
王瑾
曾向阳

引用本文:

张野,王吉平,苏天明,何铁光,王瑾,曾向阳. 筛选微生物降解木质纤维素的研究进展[J]. 中国生物工程杂志, 2020, 40(6): 100-105.

ZHANG Ye,WANG Ji-ping,SU Tian-ming,HE Tie-guang,WANG Jin,ZENG Xiang-yang. Research Progress on Degradation of Lignocellulosic Biomass by Screening Microorganisms. China Biotechnology, 2020, 40(6): 100-105.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2001053        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I6/100

[1] Klemm D, Heublein B, Fink H P , et al. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl, 2005,44(22):3358-3393.
pmid: 15861454
[2] Ramezani N, Sain M . Non-catalytic green solvent lignin isolation process from wheat straw and the structural analysis. Renewable Energy, 2019,140:292-303.
doi: 10.1016/j.renene.2019.03.026
[3] 谢光辉, 韩东倩, 王晓玉 , 等. 中国禾谷类大田作物收获指数和秸秆系数. 中国农业大学学报. 2011,16(1):1-8.
Xie G H, Han D Q, Wang X Y , et al. Harvest index and residue factor of cereal crops in China. Journal of China Agricultural University, 2011,16(1):1-8.
[4] Somerville C . Toward a systems approach to understanding plant cell walls. Science, 2004,306(5705):2206-2211.
pmid: 15618507
[5] 马泽林, 刘家亨, 黄序 , 等. 微生物利用木质纤维素的研究进展. 中国生物工程杂志, 2017,37(6):124-133.
Ma Z L, Liu J H, Huang X , et al. Research progress on utilization of lignocellulosic biomass by microorganisms. China Biotechnology, 2017,37(6):124-133.
[6] Patel A K, Singhania R R, Sim S J , et al. Thermostable cellulases: Current status and perspectives. Bioresource Technology, 2019,279:385-392.
pmid: 30685132
[7] Rosgaard L, Pedersen S, Cherry J R , et al. Efficiency of new fungal cellulase systems in boosting enzymatic degradation of barley straw lignocellulose. Biotechnology Progress, 2006,22(2):493-498.
pmid: 16599567
[8] Shen F, Zhong B, Wang Y , et al. Cellulolytic microflora pretreatment increases the efficiency of anaerobic co-digestion of rice straw and pig manure. BioEnergy Research, 2019,12(3):703-713.
[9] Lu W, Wang H, Yang S , et al. Isolation and characterization of mesophilic cellulose-degrading bacteria from flower stalks-vegetable waste co-composting system. The Journal of General and Applied Microbiology, 2005,51(6):353-360.
[10] Dar M A, Shaikh A A, Pawar K D , et al. Exploring the gut of Helicoverpa armigera for cellulose degrading bacteria and evaluation of a potential strain for lignocellulosic biomass deconstruction. Process Biochemistry, 2018,73:142-153.
[11] Lazuka A, Auer L, O Donohue M , et al. Anaerobic lignocellulolytic microbial consortium derived from termite gut: enrichment, lignocellulose degradation and community dynamics. Biotechnology for Biofuels, 2018,11(1):284-298.
[12] de Lima Brossi M J, Jiménez D J, Cortes-Tolalpa L , et al. Soil-derived Mmcrobial consortia enriched with different plant biomass reveal distinct players acting in lignocellulose degradation. Microbial Ecology, 2016,71(3):616-627.
[13] Shakarami M H, Mohammadabadi T, Motamedi H , et al. Isolation and identification of cellulolytic bacteria from gastrointestinal tract of Arabian horse and investigation of their effect on the nutritional value of wheat straw. Journal of Applied Microbiology, 2019,127(2):344-353.
[14] Cheng Y, Wang Y, Li Y , et al. Progressive colonization of bacteria and degradation of rice straw in the rumen by illumina sequencing. Frontiers in Microbiology, 2017,8:1-10.
[15] 许从峰, 艾士奇, 申贵男 , 等. 木质纤维素的微生物降解. 生物工程学报, 2019,35(11):2081-2091.
pmid: 31814356
Xu C F, Ai S Q, Shen G N , et al. Microbial degradation of lignocellulose. Chinese Journal of Biotechnology, 2019,35(11):2081-2091.
pmid: 31814356
[16] Berlemont R, Martiny A C . Phylogenetic distribution of ptential cellulases in bacteria. Applied and Environmental Microbiology, 2013,79(5):1545-1554.
[17] Su X, Zhang S, Mei R , et al. Resuscitation of viable but non-culturable bacteria to enhance the cellulose-degrading capability of bacterial community in composting. Microbial Biotechnology, 2018,11(3):527-536.
[18] Datta R, Kelkar A, Baraniya D , et al. Enzymatic degradation of lignin in soil: a review. Sustainability, 2017,9(7):1163.
[19] Chauhan P S . Role of various bacterial enzymes in complete depolymerization of lignin: a review. Biocatalysis and Agricultural Biotechnology, 2020,23:101498.
[20] Kamimura N, Sakamoto S, Mitsuda N , et al. Advances in microbial lignin degradation and its applications. Current Opinion in Biotechnology, 2019,56:179-186.
pmid: 30530243
[21] Fernandez-Fueyo E, Ruiz-Duenas F J, Ferreira P , et al. Comparative genomics of ceriporiopsis subvermispora and phanerochaete chrysosporium provide insight into selective ligninolysis. Proceedings of the National Academy of Sciences, 2012,109(14):5458-5463.
[22] Sahoo K, Sahoo R K, Gaur M , et al. Cellulolytic thermophilic microorganisms in white biotechnology: a review. Folia Microbiologica, 2019: 1-19.
[23] Chen C, Yao J, Yang B , et al. Engineer multi-functional cellulase/xylanase/β-glucosidase with improved efficacy to degrade rice straw. Bioresource Technology Reports, 2019,5:170-177.
[24] Zakzeski J, Bruijnincx P C A, Jongerius A L , et al. The Catalytic valorization of lignin for the production of renewable chemicals. Chemical Reviews, 2010,110(6):3552-3599.
pmid: 20218547
[25] Wang W, Yan L, Cui Z , et al. Characterization of a microbial consortium capable of degrading lignocellulose. Bioresource Technology, 2011,102(19):9321-9324.
doi: 10.1016/j.biortech.2011.07.065 pmid: 21831630
[26] 崔宗均, 李美丹, 朴哲 , 等. 一组高效稳定纤维素分解菌复合系MC1的筛选及功能. 环境科学, 2002(03):36-39.
Cui Z J, Li M D, Piao Z , et al. Selection of a composite microbial system MC1 with efficient and stability cellulose degradation bacteria and its function. Environmental Science, 2002(03):36-39.
[27] Kato S, Haruta S, Cui Z J , et al. Effective cellulose degradation by a mixed-culture system composed of a cellulolytic Clostridium and aerobic non-cellulolytic bacteria. FEMS Microbiology Ecology, 2004,51(1):133-142.
pmid: 16329862
[28] Yuan X, Ma L, Wen B , et al. Enhancing anaerobic digestion of cotton stalk by pretreatment with a microbial consortium (MC1). Bioresource Technology, 2016,207:293-301.
[29] Mishra V, Jana A K, Jana M M , et al. Enhancement in multiple lignolytic enzymes production for optimized lignin degradation and selectivity in fungal pretreatment of sweet sorghum bagasse. Bioresource Technology, 2017,236:49-59.
[30] Yang L, Yuan H, Yang Y , et al. Enhanced lignin degradation in tobacco stalk composting with inoculation of white-rot fungi trametes hirsuta and pleurotus ostreatus. Waste and Biomass Valorization, 2019: 1-11.
pmid: 32421107
[31] 刘晓梅 . 杏鲍菇菌渣纤维素降解菌的筛选、复合菌剂构建及应用. 北京:中国农业科学院, 2015.
Liu X M . Screening of cellulose-degradation bacteria for pleurotus eryngii spent substrate, construction and application of composite microbial system. Beijing: Chinese Academy of Agricultural Sciences, 2015.
[32] 夏强 . 纤维素降解混合菌剂的构建及降解效能. 哈尔滨:哈尔滨工业大学, 2018.
Xia Q , Construction of cellulose-degrading compound microbial inoculum and degradation efficiency. Harbin: Harbin Institute of Technology, 2018.
[33] Hess M, Sczyrba A, Egan R , et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science, 2011,331(6016):463-467.
[34] Wilhelm R C, Singh R, Eltis L D , et al. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J, 2019,13(2):413-429.
pmid: 30258172
[35] Alessi A M, Bird S M, Oates N C , et al. Defining functional diversity for lignocellulose degradation in a microbial community using multi-omics studies. Biotechnol Biofuels, 2018,11:166.
[36] Hassa J, Maus I, Off S , et al. Metagenome, metatranscriptome, and metaproteome approaches unraveled compositions and functional relationships of microbial communities residing in biogas plants. Appl Microbiol Biotechnol, 2018,102(12):5045-5063.
[37] Güllert S, Fischer M A, Turaev D , et al. Deep metagenome and metatranscriptome analyses of microbial communities affiliated with an industrial biogas fermenter, a cow rumen, and elephant feces reveal major differences in carbohydrate hydrolysis strategies. Biotechnology for Biofuels, 2016,9(1):121-140.
[1] 李云成, 汤岳琴, 木田建次. “组学”技术在燃料乙醇生产用酿酒酵母菌株构建中的应用[J]. 中国生物工程杂志, 2014, 34(2): 118-128.
[2] 张晓阳, 李余动, 吴雪昌. 酿酒酵母的"组学"技术研究进展及其在工程菌株构建中的应用[J]. 中国生物工程杂志, 2011, 31(8): 139-144.