Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (6): 1-9    DOI: 10.13523/j.cb.2001010
研究报告     
Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析
郭洋1,3,万颖寒2,3,王珏2,3,龚慧2,3,周宇4,慈磊4,万志鹏4,孙瑞林4,费俭1,3,4,*,沈如凌2,3,*()
1 同济大学生命科学与技术学院 上海 200092
2 上海实验动物研究中心 上海 201203
3 模式生物及比较医学联合实验室上海实验动物研究中心 同济大学生命科学与技术学院 上海 201203
4 上海市模式动物工程技术研究中心 上海 201318
Toll-like Receptor 4 (TLR4) Gene Knockout Mouse Model Construction and Preliminary Phenotypic Analysis
GUO Yang1,3,WAN Ying-han2,3,WANG Jue2,3,GONG Hui2,3,ZHOU Yu4,CI Lei4,WAN Zhi-peng4,SUN Rui-lin4,FEI Jian1,3,4,*,SHEN Ru-ling2,3,*()
1 School of Life Science and Technology, Tongji University, Shanghai 200092, China
2 Shanghai Laboratory Animal Research Center,Shanghai 201203, China
3 Joint Laboratory of Model Biology and Comparative Medical Research, Shanghai Laboratory Animal Research Center,Shanghai 201203,China
4 Shanghai Model Organisms Center Inc., Shanghai 201318, China
 全文: PDF(1799 KB)   HTML
摘要:

目的 利用CRISPR/Cas9技术构建Toll样受体4(TLR4)基因敲除小鼠模型,并观察突变小鼠对革兰氏阴性细菌脂多糖(LPS)刺激响应的变化。方法 针对TLR4基因外显子2设计并合成1对sgRNA片段,与编码Cas9的mRNA混合后通过受精卵显微注射方法,建立TLR4基因敲除小鼠,通过繁育获得基因敲除纯合子小鼠(TLR4-/-小鼠);通过LPS刺激,分析TLR4-/-小鼠对炎症应激的反应情况,并在分子和病理水平上和野生型对照(WT)进行比较。结果 PCR及测序检测表明TLR4基因外显子2在小鼠基因中被成功敲除;给予LPS刺激后,IL1βIL6MyD88iNOSTNFa等炎症因子的表达在野生型小鼠的心、肝和肺组织中显著上调,而在TLR4-/-小鼠中则几乎没有变化;血生化指标显示LPS刺激后WT小鼠血清中的尿素(Urea)和肌酐(Cre)水平显著升高,而TLR4-/-小鼠刺激前后无显著变化,病理分析同样发现TLR4-/-小鼠能够抵抗LPS对肾组织的损伤。结论 利用CRISPR/Cas9技术成功构建了TLR4基因剔除小鼠模型,TLR4的缺失能够降低IL1βIL6MyD88iNOSTNFa炎症因子对LPS刺激的响应,抑制LPS引起的炎症反应及对组织的损伤。

关键词: Toll样受体4(TLR4)CRISPR/Cas9系统基因敲除LPS    
Abstract:

Objective: To construct a Toll-like receptor 4 (TLR4) gene knockout mouse model using CRISPR / Cas9 technology, and observe the changes in mutant mice’s response to gram-negative bacterial lipopolysaccharide (LPS) stimulation.Methods: One pair of sgRNA fragments were designed and synthesized for exon 2 of TLR4 gene, mixed with mRNA encoding Cas9 and then injected with TLR4 gene knockout mice through fertilized egg microinjection method, and gene knockout homozygous mice were obtained by breeding (TLR4 -/-mice); The response of TLR4-/-mice to inflammatory stress was analyzed by LPS stimulation, and compared with wild-type control (WT) at the molecular and pathological levels.Results: PCR and sequencing showed that exon 2 of TLR4 gene was successfully knocked out in mouse genes. After LPS stimulation, the expressions of inflammatory factors such as IL1β, IL6, MyD88, iNOS and TNFa were detected in the heart of wild-type mice. Significantly up-regulated in liver and lung tissues, but almost no change in TLR4 -/-mice; blood biochemical indicators showed that urea (Crea) and creatinine (Cre) levels in WT mice were significantly increased after LPS stimulation, and TLR4-/-mice had no significant changes before and after stimulation. Pathological analysis also found that TLR4-/-mice were able to resist LPS damage to kidney tissue.Conclusion: TLR4 gene knockout mouse model was successfully constructed using CRISPR / Cas9 technology. The deletion of TLR4 can reduce the response of IL1β, IL6, MyD88, iNOS and TNFa inflammatory factors to LPS stimulation, inhibit LPS-induced inflammatory response and tissue damage.

Key words: TLR4    CRISPR/Cas9 gene    Knock-out    LPS
收稿日期: 2020-01-02 出版日期: 2020-06-23
ZTFLH:  Q291  
通讯作者: 费俭,沈如凌     E-mail: alieen_shen@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郭洋
万颖寒
王珏
龚慧
周宇
慈磊
万志鹏
孙瑞林
费俭
沈如凌

引用本文:

郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.

GUO Yang,WAN Ying-han,WANG Jue,GONG Hui,ZHOU Yu,CI Lei,WAN Zhi-peng,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Toll-like Receptor 4 (TLR4) Gene Knockout Mouse Model Construction and Preliminary Phenotypic Analysis. China Biotechnology, 2020, 40(6): 1-9.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2001010        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I6/1

sgRNA靶序列 序列信息(5'-3')
sgRNA 1 GACATCTTATTCCACATATC
sgRNA 2 CATACTCCTAATTATTAAGC
表1  sgRNA序列信息
序列信息(5'-3')
SgRNA1正义链 CACCGGACATCTTATTCCACATATC
SgRNA1反义链 AAACGATATGTGGAATAAGATGTCC
SgRNA2正义链 CACCGCATACTCCTAATTATTAAGC
SgRNA2反义链 AAACGCTTAATAATTAGGAGTATGC
表2  寡核苷酸链序列信息
引物 序列信息(5'-3')
P1 AGCAAAGACAAGGGAGTAAGAA
P2 GCCTGAAATACTGGCTAAAAG
表3  引物序列信息
Gene 上游序列信息(5'-3') 下游序列信息(5'-3')
TLR4 ATGGCACTGTTCTTCTCCTG AGCTCAGATCTATGTTCTTGGTTG
IL1β GAAATGCCACCTTTTGACAGTG TGGATGCTCTCATCAGGACAG
TNF-α CCTGTAGCCCACGTCGTAG GGGAGTAGACAAGGTACAACCC
MyD88 GGGAGTAGACAAGGTACAACCC GTCTGTTCTAGTTGCCGGATC
IL6 CTTCACAAGTCGGAGGCTTAAT CAGTTTGGTAGCATCCATCATTTC
iNOS GCAAACATCACATTCAGATCCC TCAGCCTCATGGTAAACACG
β-actin CCTGTATGCCTCTGGTCGTA CCATCTCCTGCTCGAAGTCT
表4  RT-PCR引物序列
图1  TLR4-/-小鼠基因敲除策略
图2  TLR4基因敲除小鼠基因型鉴定结果
类型 序列信息(5'-3')
野生型序列 atgttaacatattgagaattcaggggatattttttcttcctgatatgtggaataagatgtcttgcaaatatgaagaggcagataaataaatggagaaggatgggtgtgataccatatccccaga
......agatatttatgaaccatgtcttatatgttgtatgtctaaactacagaagaagaatttatagatacaaaacccatactcctaattattaagcaggataaaatcctctttaacaaa
敲除类型1 atgttaacatattgagaattcaggggatattttttcttcctgata---(-825bp)---aaatcctctttaacaaa
敲除类型2 atgttaacatattgagaattcaggggatattttttcttcctgata---(-817bp)---gcaggataaaatcctctttaacaaa
表5  TLR4野生型和两种不同敲除类型的序列信息
图3  TLR4-/-小鼠TLR4及下游调控基因mRNA相对表达水平检测
图4  LPS刺激前后TLR4-/-小鼠iNOS,TNF-α和IL-6表达检测
图5  LPS给药刺激前后TLR4-/-小鼠肾功能情况
[1] Medzhitov R, Janeway C A , Jr. Innate immunity: the virtues of a nonclonal system of recognition. Cell, 1997,91(3):295-298.
doi: 10.1016/s0092-8674(00)80412-2 pmid: 9363937
[2] Kawasaki T, Kawai T . Toll-like receptor signaling pathways. Front Immunol, 2014,5 461.
pmid: 25309543
[3] Kabelitz D . Expression and function of Toll-like receptors in T lymphocytes. Curr Opin Immunol, 2007,19(1):39-45.
pmid: 17129718
[4] Sepehri Z, Kiani Z, Kohan F , et al. Toll like receptor 4 and hepatocellular carcinoma; a systematic review. Life Sci, 2017,179 80-87.
pmid: 28472619
[5] Lu Y C, Yeh W C, Ohashi P S . LPS/TLR4 signal transduction pathway. Cytokine, 2008,42(2):145-151.
[6] Medzhitov R, Janeway C A , Jr. Innate immunity: impact on the adaptive immune response. Curr Opin Immunol, 1997,9(1):4-9.
[7] Thomas A V, Broers A D, Vandegaart H F , et al. Genomic structure, promoter analysis and expression of the porcine (Sus scrofa) TLR4 gene. Molecular Immunology, 2006,43(6):653-659.
[8] Khedr L H, Nassar N N, Rashed L , et al. TLR4 signaling modulation of PGC1-alpha mediated mitochondrial biogenesis in the LPS-Chronic mild stress model: effect of fluoxetine and pentoxiyfylline. Life Sci, 2019,116869.
[9] Asea A . Heat shock proteins and toll-like receptors. Handb Exp Pharmacol, 2008, ( 183):111-127.
[10] Fei D, Meng X, Yu W , et al. Fibronectin (FN) cooperated with TLR2/TLR4 receptor to promote innate immune responses of macrophages via binding to integrin beta1. Virulence, 2018,9(1):1588-1600.
pmid: 30272511
[11] Voelcker V, Gebhardt C, Averbeck M , et al. Hyaluronan fragments induce cytokine and metalloprotease upregulation in human melanoma cells in part by signalling via TLR4. Exp Dermatol, 2008,17(2):100-107.
pmid: 18031543
[12] Wang Y, Qian Y, Fang Q , et al. Saturated palmitic acid induces myocardial inflammatory injuries through direct binding to TLR4 accessory protein MD2. Nat Commun, 2017,8 13997.
doi: 10.1038/ncomms13997 pmid: 28045026
[13] Zhang M, Xue Y, Chen H , et al. Resveratrol inhibits MMP3 and MMP9 expression and secretion by suppressing TLR4/NF-kappaB/STAT3 activation in Ox-LDL-Treated HUVECs. Oxid Med Cell Longev, 2019,2019 9013169.
[14] Wang D, Gilbert J R, Taylor G M , et al. TLR4 inactivation in myeloid cells accelerates bone healing of a calvarial defect model in mice. Plast Reconstr Surg, 2017,140(2):296e-306e.
[15] Oblak A and Jerala R . Toll-like receptor 4 activation in cancer progression and therapy. Clin Dev Immunol, 2011,2011 609579.
pmid: 22110526
[16] Ohadian Moghadam S, Nowroozi M R . Toll-like receptors: the role in bladder cancer development, progression and immunotherapy. Scand J Immunol, 2019,e12818.
[17] Khademalhosseini M, Arababadi M K . Toll-like receptor 4 and breast cancer: an updated systematic review. Breast Cancer, 2019,26(3):265-271.
[18] Huang B, Zhao J, Li H , et al. Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Res, 2005,65(12):5009-5014.
[19] Kelly M G, Alvero A B, Chen R , et al. TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Res, 2006,66(7):3859-3868.
pmid: 16585214
[20] Hoshino K, Takeuchi O, Kawai T , et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol, 1999,162(7):3749-3752.
pmid: 10201887
[21] Wiedenheft B, Sternberg S H, Doudna J A . RNA-guided genetic silencing systems in bacteria and archaea. Nature, 2012,482(7385):331-338.
[22] Gasiunas G, Barrangou R, Horvath P , et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(39):E2579-E2586.
[23] Wang H, Yang H, Shivalila C S , et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 2013,153(4):910-918.
[24] Shen B, Zhang J, Wu H , et al. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Research, 2013,23(5):720-723.
[25] Reyon D, Tsai S Q, Khayter C , et al. FLASH assembly of TALENs for high-throughput genome editing. Nature Biotechnology, 2012,30(5):460-465.
[26] Royet J . Infectious non-self recognition in invertebrates: lessons from Drosophila and other insect models. Mol Immunol, 2004,41(11):1063-1075.
[27] Takeuchi O, Akira S . Toll-like receptors; their physiological role and signal transduction system. Int Immunopharmacol, 2001,1(4):625-635.
pmid: 11357875
[28] Shi Y J, Gong H F, Zhao Q Q , et al. Critical role of toll-like receptor 4 (TLR4) in dextran sulfate sodium (DSS)-Induced intestinal injury and repair. Toxicol Lett, 2019,3157(23):23-30.
[29] Ruiz E, Penrose H M, Heller S , et al. Bacterial TLR4 and NOD2 signaling linked to reduced mitochondrial energy function in active inflammatory bowel disease. Gut Microbes, 2019, 1-14.
[30] Florim G M, Caldas H C, Gonçalves N N , et al. Activation of HMGB1 - TLR4 pathway and inflammasome contribute to enhanced inflammatory response in extended criteria and kidneys with KDPI ≥ 85. Transplantation, 2020,104(4):724-730.
[31] Zhang L, Sun D, Bao Y , et al. Nerolidol protects against LPS-induced acute kidney injury via inhibiting TLR4/NF-κB signaling. Phytotherapy Research: PTR, 2017,31(3):459-465.
[32] Zhao J, Zheng H, Sui Z , et al. Ursolic acid exhibits anti-inflammatory effects through blocking TLR4-MyD88 pathway mediated by autophagy. Cytokine, 2019,123:154-726.
[1] 毕博,张宇,赵慧. 酵母杂交系统在CRISPR/Cas9基因编辑系统脱靶率研究中的应用*[J]. 中国生物工程杂志, 2021, 41(6): 27-37.
[2] 彭海丽,侯占铭. MDT1基因参与禾谷镰刀菌分生孢子发生和营养生长 *[J]. 中国生物工程杂志, 2020, 40(8): 10-18.
[3] 蒋丹丹,王云龙,李玉林,张怡青. 含RGD修饰的病毒样颗粒递送ICG靶向肿瘤的研究 *[J]. 中国生物工程杂志, 2020, 40(7): 22-29.
[4] 郭晶,侯占铭. Folpcs1基因对尖孢镰刀菌亚麻专化型的无性繁殖和营养生长的调控 *[J]. 中国生物工程杂志, 2020, 40(3): 48-64.
[5] 郭胜楠, 李信晓, 王峰, 刘昆梅, 丁娜, 扈启宽, 孙涛. 海马与新皮质组织特异性GABRG2基因敲除小鼠模型的构建及其在遗传性癫痫伴热性惊厥附加症中的初步研究 *[J]. 中国生物工程杂志, 2020, 40(3): 9-20.
[6] 菅璐,黄映辉,梁天亚,王利敏,马洪涛,张婷,李丹阳,王明连. 利用CRISPR/Cas9技术建立敲除JAK2基因K562细胞系 *[J]. 中国生物工程杂志, 2019, 39(7): 39-47.
[7] 郭超婧,朱琼,张新,李磊,张令强. 去泛素化酶OTUB1肝脏特异性基因敲除小鼠模型的构建与表型分析 *[J]. 中国生物工程杂志, 2019, 39(5): 80-87.
[8] 万颖寒,慈磊,王珏,龚慧,李俊,董茹,孙瑞林,费俭,沈如凌. PD-L1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2019, 39(12): 42-49.
[9] 吴果果,宋淑婷,岳荣,张晶,关莹,王玥,刘宝爱,吕学敏,魏建军,张会图. 反向筛选标记基因upp在杀真菌链霉菌遗传改造中的应用 *[J]. 中国生物工程杂志, 2019, 39(11): 78-86.
[10] 陆海燕,李佳蔓,孙思凡,章小毛,丁娟娟,邹少兰. CRISPR - Cas9系统介导的工业酵母营养缺陷型菌株构建 *[J]. 中国生物工程杂志, 2019, 39(10): 67-74.
[11] 苏春晓,张晓玉,曾晗,陈压西,阮雄中,杨萍. 肝脏特异性CD36基因敲除小鼠的制备及鉴定 *[J]. 中国生物工程杂志, 2018, 38(8): 26-33.
[12] 化磊召,易小萍,储炬,庄英萍,张嗣良. 基于PAT的PCV2 VLPs生产过程优化与控制研究[J]. 中国生物工程杂志, 2018, 38(8): 50-58.
[13] 戴红苗,付业胜,张令强. 应用CRISPR/Cas9技术构建YOD1基因敲除小鼠 *[J]. 中国生物工程杂志, 2018, 38(6): 52-57.
[14] 盛玉瑞,李斌,王斌,左娣,马琳,任晓璠,郭乐,刘昆梅. 利用CRISPR/Cas9技术构建AEG-1基因敲除U251细胞系并探讨其转移行为的特点 *[J]. 中国生物工程杂志, 2018, 38(10): 38-47.
[15] 孙一平, 王越, 金镇, 王晓岩, 孙磊, 张璇, 冯冲, 周效华. SHBG基因敲除小鼠模型的建立及其表型分析[J]. 中国生物工程杂志, 2017, 37(8): 39-45.