Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (6): 20-30    DOI: 10.13523/j.cb.1912034
研究报告     
大肠杆菌糖酵解途径和三羧酸循环启动子的表征及其应用 *
玄美娟,张晓云,高莹,高丽影,吴佳婧,马梅,王艳梅,寇航,路福平,黎明()
工业发酵微生物教育部重点实验室 天津市工业微生物重点实验室 天津科技大学生物工程学院 天津 300457
Characterization of Promoters in the Glycolytic Pathway and Tricarboxylic Acid Cycle of E. coli and Its Application
XUAN Mei-juan,ZHANG Xiao-yun,GAO Ying,Li-GAO Ying,WU Jia-jing,MA Mei,WANG Yan-mei,KOU Hang,LU Fu-ping,LI Ming()
Key Laboratory of Industrial Fermentation Microbiology(Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Biotechnology College, Tianjin University of Science and Technology, Tianjin 300457, China
 全文: PDF(1051 KB)   HTML
摘要:

启动子是控制基因转录的重要元件,也是合成生物学研究和细胞工厂设计的关键环节。糖酵解途径和三羧酸循环是糖类分解代谢的中心代谢,受到包括启动子强度在内的严格调控。为了筛选一系列能满足合成生物学研究和细胞工厂设计需要的不同强度的内源性组成型启动子,利用报告基因——红色荧光蛋白mCherry和在线分析软件,系统研究了大肠杆菌糖酵解和三羧酸循环中27个启动子的强度和核心结构元件。结果表明:这些启动子的强度范围变化很大,最强启动子PgapA的强度是最弱启动子PacnA强度的43.6倍;启动子的-10序列和-35序列与它们的一致序列也不完全相同,两者之间的距离为17±3bp;但是,启动子的强度和启动子的结构特征基本一致。应用最强启动子PgapA在重组大肠杆菌DH5αΔpck中分别表达磷酸烯醇式丙酮酸羧化酶基因和丙酮酸激酶基因,它们的酶活性分别提高了0.32和1.57倍,柠檬酸产量也提高了124.7%和75.5%。这些不同强度的启动子为大肠杆菌的合成生物学研究和细胞工厂设计奠定了一定的基础。

关键词: 启动子糖酵解途径三羧酸循环磷酸烯醇式丙酮酸羧化酶丙酮酸激酶    
Abstract:

The promoters are important components that regulate gene transcription, and key parts in synthetic biology research and cell factory design. Glycolytic pathway and tricarboxylic acid (TCA) cycle are the central metabolisms of carbohydrate catabolism and are strictly regulated by promoter strength. In order to screen some endogenous constitutive promoters with various strength necessary for synthetic biology studies and cell factory design of Escherichia coli, the strength and core structural elements of 27 promoters in glycolytic pathway and TCA cycle of E. coli were systematically studied using the red fluorescent protein (RFP) mCherry as the reporter gene and online analysis software. The results showed that the strength range of these promoters varied greatly, and the strength of the strongest promoter PgapA was 43.6 times that of the weakest promoter PacnA. Moreover, the -10 and -35 sequences of promoters are not exactly same as their consistent sequences, and the spacer between them is 17±3 bp. However, the strength of the promoters was basically consistent with the structural characteristics of the promoters. Using the strongest promoter PgapA, Phosphoenolpyruvate carboxylase and pyruvate kinase were expressed in recombinant E. coli DH5αΔpck, respectively. Their enzyme activity was increased by 0.32 and 1.57 times, respectively, and the production of citric acid was also increased by 124.7% and 75.5%. These promoters with different strength have laid a foundation for the study of synthetic biology and the design of cell factory of E. coli.

Key words: Promoter    Glycolytic pathway    Tricarboxylic acid cycle    Pyruvate kinase    Phosphoenolpyruvate carboxylase
收稿日期: 2019-12-20 出版日期: 2020-06-23
ZTFLH:  Q814  
基金资助: * 国家自然科学基金(21176190)
通讯作者: 黎明     E-mail: liming09@tust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
玄美娟
张晓云
高莹
高丽影
吴佳婧
马梅
王艳梅
寇航
路福平
黎明

引用本文:

玄美娟,张晓云,高莹,高丽影,吴佳婧,马梅,王艳梅,寇航,路福平,黎明. 大肠杆菌糖酵解途径和三羧酸循环启动子的表征及其应用 *[J]. 中国生物工程杂志, 2020, 40(6): 20-30.

XUAN Mei-juan,ZHANG Xiao-yun,GAO Ying,Li-GAO Ying,WU Jia-jing,MA Mei,WANG Yan-mei,KOU Hang,LU Fu-ping,LI Ming. Characterization of Promoters in the Glycolytic Pathway and Tricarboxylic Acid Cycle of E. coli and Its Application. China Biotechnology, 2020, 40(6): 20-30.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.1912034        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I6/20

Strains or plasmids Relevant characteristics Reference
Escherichia coli DH5α Cloning host This lab
DH5αΔpck DH5α, ΔacnB, ΔldhA, Δpckppc This lab
DH5α-PPC DH5αΔpck containing pET-gapA-PPC This work
DH5α-PykF DH5αΔpck containing pET-gapA-PykF This work
pET-RFP Plasmid containing mCherry, ampr, cmr This lab
pETM6 Expression plasmid, ampr Prof. Koffas
pET-promoter-RFP Plasmids containing cloned promoter and mCherry This work
pET-gapA-PPC Plasmid containing PgapA and ppc This work
pET-gapA-PykF Plasmid containing PgapA and pykF This work
表1  本研究所用的菌株和质粒
图1  大肠杆菌糖酵解途径及三羧酸循环
Number Gene Primer name and primer sequence(5'→3') Restriction site
1 glk glkF: CAGGATCCGGCATCGCTGCAATTGGTGC BamH Ⅰ
glkR: GGGGTACCACTGCTCCGCTAAAGTCAAAATAATTCTTT Kpn
2 pgm pgmF: CGGGATCCCGCGTTGTCGGGTTAGGGTATTAT BamH Ⅰ
pgmR: CCGGTACCATCCAGTGCAGTGTCTTAGCTGAATAC Kpn
3 pgi pgiF: CGGGATCCACTGGCTCCTCCAACACCGTTACTT BamH Ⅰ
pgiR: CCGGTACCTACTCTTCTGATTTTGAGAATTGTGAC Kpn
4 pfkA pfkAF: GACGGATCCCAGGGAGGGTAAACGGTCTATGCTT BamH Ⅰ
pfkAR: CCGGTACCTACCTCTGAACTTTGGAATGCAA Kpn
5 pfkB pfkBF: CCGGATCCAAGGATCAAAGATTAGCGTCCCTGG BamH Ⅰ
pfkBR: CGGGTACCTCCTCCTATAGGCTGATTTCAGTCTG Kpn
6 fbaB fbaBF: CCGGATCCAGGTAATGTAAGGTACGCGATGACAA BamH Ⅰ
fbaBR: CCGGTACCTGCTCCCGTAAATTCCGATTGG Kpn
7 fbaA fbaAF: CCGGATCCTCATACTCTAAATAATTCGAGTTGCAGGAA BamH Ⅰ
fbaAR: CCGGTACCTGTCCTGTATCGTCGGGCCTTATA Kpn
8 gapA gapAF: CAGGATCCGGCTGCACCTAAATCGTGATGAA BamH Ⅰ
gapAR: CCGGTACCTCCACCAGCTATTTGTTAGTGAATAAAAG Kpn
Number Gene Primer name and primer sequence(5'→3') Restriction site
9 pgk pgkF: GCGGATCCGTCAGATAAATGTCTTCTTCGGCTGGA BamH Ⅰ
pgkR: CCGGTACCCTCCTGCAAGGTTTTCCCTGAGCAA Kpn
10 gpmA gpmAF: CCGGATCCGTTCAAATCACCAGCAAACACCGACAT BamH Ⅰ
gpmAR: CCGGTACCTACTCCTCAAATCATCTTTTAATGATAATAATT Kpn
11 gpmM gpmMF: CTGGATCCCGCGTTAACTGGAATGCAATTT BamH Ⅰ
gpmMR: CCGGTACCAACCTCATACTCAAGAGTCAAAATTTGCG Kpn
12 eno enoF: CGGGATCCTTGCCAGTTCCATCCGGAGTTT BamH Ⅰ
enoR: CCGGTACCTTCCTCAAGTCACTAGTTAAACTGAAACTCC Kpn
13 pykF pykFF: GGGGATCCTATAATGCGCGCCAATTGACT BamH Ⅰ
pykFR: CCGGTACCGTCTTAGTCTTTAAGTTGAGAAGGATGGG Kpn
14 pykA pykAF: GTGGATCCGGTCAAAGAAGCGCTGAAGGAA BamH Ⅰ
pykAR: GGGGTACCTACTCCGTTGACTGAAACAACCAGG Kpn
15 aceE aceEF: CCGGATCCTCTCTGCGTCGTCTGGAGCAAC BamH Ⅰ
aceEhR: CCGGTACCTATTCCTTATCTATCTAATAACGTTGAGTTTTCT Kpn
16 gltA gltAF: CCGGATCCAGTGTGGAAGTATTGACCAATTCATTC BamH Ⅰ
gltAR: CTGGTACCTCTCCTTAGCGCCTTATTGCG Kpn
17 acnA acnAF: CGGGATCCATGCCAGCATAGTGACAATGAAACAG BamH Ⅰ
acnAR: CCGGTACCCCTCCTTAATGACAGGGTTGCG Kpn
18 acnB acnBF: CCGGATCCGATTATCACCATGCGAATTAACG BamH Ⅰ
acnBR: CCGGTACCTCTCCTCGCTCTCATTGTCATAGT Kpn
19 icd icdF: CGGGATCCTTATAGCCTAATAACGCGCATCTTTCAT BamH Ⅰ
icdR: CCGGTACCCTCTCCTTCGAGCGCTACTGGTTT Kpn
20 sucA/B sucA,sucBF: TGGGATCCTTATCCGGCCTACAAGTCATTACCC BamH Ⅰ
sucA,sucBR: ACGGTACCATCCCTTAAGCATCTTTTTTATGC Kpn
21 sucC/D sucC,sucDF: TCGGATCCACCAATGTAGGTCGGATAAGGCG BamH Ⅰ
sucC,sucDR: CCGGTACCTGTCCATCCTTCAGTAATCGTTATC Kpn
22 sdhA/B/C/D sdhF: CCGGATCCCAGCCTATACTGCCGCCAGGT BamH Ⅰ
sdhR: CCGGTACCCGCCCACATGCTGTTCTTATTATTC Kpn
23 frdA/B/C/D frdF: CGGGATCCAGGAATCAAACAGCGGTGGGC BamH Ⅰ
frdR: CCGGTACCTTCCTCCAGATTGTTTTTATCCCACAG Kpn
24 fumA/C fumF: CCGGATCCCATGATCAATCCCTGTTTTAATGTGG BamH Ⅰ
fumR: CCGGTACCCTCTCACTTACTGCCTGGTTTGGTTATG Kpn
25 mqo mqoF: TCGGATCCCGGACGGCATAATATTACGACGC BamH Ⅰ
mqoR: CCGGTACCAATGCCTTACTTTTAGTCGCTTTATTGC Kpn
26 mdh mdhF: CGGGATCCTGAGAAACATGCCTGCGTCACG BamH Ⅰ
mdhR:CCGGTACCCTCCTTATTATATTGATAAACTAAGATATGTTGCTCC Kpn
27 ldhA ldhAF: CGGGATCCTCAGTAATAACAGCGCGAGAACG BamH Ⅰ
ldhAR: CCGGTACCTTCTCCAGTGATGTTGAATCACA Kpn
28 PgapA ETgapAF1: GGCCGCGCGCTGCACCTAAATCGTGATGAAAATC BssH Ⅱ
ETgapAR1: GCTCTAGACAGCTATTTGTTAGTGAATAAAAGGTTGCCTG Xba
29 ppc ETppcF: GGTTAACCATATGAACGAACAATATTCCGCATTGCGT Nde
ETppcR: GGACTAGTTTAGCCGGTATTACGCATACCTGCC Spe
30 pykF ETpykFF: GGTTAACCATATGAAAAAGACCAAAATTGTTTGCACCATC Nde
ETpykFR: GGACTAGTTTACAGGACGTGAACAGATGCGG Spe
表2  扩增启动子和目的基因引物序列
图2  重组质粒pET-promoter-RFP的构建过程
图3  重组质粒pET-promoter-RFP 酶切验证
图4  不同基因启动子相对于启动子PacnA的相对强度
Number Promoter -35sequence
TTGACA
-10sequence
TATAAT
Spacer
(bp)
1 Pglk TTGTTG TACAGT 17
2 Ppgm TATCCG TATACT 17
3 Ppgi ATCACA TACAAT 17
4 PpfkA ATCAAT TATACT 17
5 PpfkB TTCACT CAGACT 18
6 PfbaB TTGCGG TAACAT 19
7 PfbaA ACAAGA TTACAT 17
8 PgapA TTGTAA TATTCA 17
9 Ppgk TTGCTG CAATTT 15
10 PgpmA TTGCTG TATAAT 17
11 PpgmM TTTTAT TAAAAT 14
12 Peno TTGACG TACAA T 17
13 PpykF TTGAAT TAGAAC 20
14 PpykA CTTATA TAATTT 17
15 PaceE ATAAAA TAGAAC 17
16 PgltA TTGATG TAAGTT 15
17 PacnA TTATCA TGTTAT 19
18 PacnB TTAACA TATTCT 17
19 Picd TTGACA TAACAA 17
20 PsucA GGCACG TAGTAT 17
21 PsucC ATGCCT TCTTAT 18
22 PsdhC ACCTCT AATAAT 19
23 PfrdA ATTTCA TATACT 17
24 PfumA GTGTAG TTAACA 17
25 Pmqo TTATAA TATAAT 17
26 Pmdh TTGTAA TAAGGT 17
27 PldhA TTTCAA TAAAAT 17
表3  启动子功能元件分析
图5  重组质粒pET-gapA-PPC与pET-gapA-PykF构建
图6  重组质粒pET-gapA-ppc(a)与pET-gapA-PykF(b)酶切验证
图7  PPC(a)与PykF(b)酶活力测定
图8  重组菌株产柠檬酸的含量
[1] Dellomonaco C, Clomburg J M, Miller E N , et al. Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals. Nature, 2011,476:355-359.
[2] Machado H B, Dekishima Y, Luo H , et al. A selection platform for carbon chain elongation using the CoA dependent pathway to produce linear higher alcohols. Metab Eng, 2012,14:504-511.
[3] Choi Y J, Lee S Y . Microbial production of short-chain alkanes. Nature, 2013,502:571-574.
[4] Kallio P, Pasztor A, Thiel K , et al. An engineered pathway for the biosynthesis of renewable propane. Nat Commun, 2014,5:4731. doi: 10.1038/ncomms5731.
doi: 10.1038/ncomms5731
[5] Doroshenko V G, Livshits V A, Airich L G , et al. Metabolic engineering of Escherichia coli for the production of phenylalanine and related compounds. Appl Biochem Microbiol, 2015,51(7):733-750.
[6] Yim H, Haselbeck R, Niu W , et al. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol, 2011,7:445-452.
pmid: 21602812
[7] Barton N R, Burgard A P, Burk M J , et al. An integrated biotechnology platform for developing sustainable chemical processes. J Ind Microbiol Biotechnol, 2015,42:349-360.
[8] Xia X X, Qian Z G, Ki C S , et al. Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proc Natl Acad Sci USA, 2010,107:14059-14063.
[9] Yang J E, Choi Y J, Lee S J , et al. Metabolic engineering of Escherichia coli for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose. Appl Microbiol Biotechnol, 2014,98:95-104.
[10] Choi K R, Shin J H, Cho J S , et al. Systems metabolic engineering of Escherichia coli. EcoSal Plus, 2016, doi: 10.1128/ecosalplus.ESP-0010-2015.
doi: 10.1128/ecosalplus.ESP-0010-2015 pmid: 30681066
[11] Nandagopal N, Elowitz M B . Synthetic biology: integrated gene circuits. Science, 2011,333:1244-1248.
[12] Engstrom M D, Pfleger B F . Transcription control engineering and applications in synthetic biology. Synth Syst Biotechnol, 2017,2:176-191.
[13] Chen X L, Gao C, Guo L , et al. DCEO biotechnology: tools to design, construct, evaluate, and optimize the metabolic pathway for biosynthesis of chemicals. Chem Rev, 2018,118:4-72.
pmid: 28443658
[14] Alper H, Fischer C, Nevoigt E , et al. Tuning genetic control through promoter engineering. Proc Natl Acad Sci USA, 2005,102:12678-12683.
doi: 10.1073/pnas.0504604102 pmid: 16123130
[15] Blount BA, Weenink T, Vasylechko S , et al. Rational diversification of a promoter providing fine-tuned expression and orthogonal regulation for synthetic biology. PLoS One, 2012,7(3):e33279-e332809.
[16] Xu N, Wei L, Liu J . Recent advances in the applications of promoter engineering for the optimization of metabolite biosynthesis. World J Microb Biot, 2019,35:33.
[17] Sendy B . Studies on transcription in Escherichia coli. Birmingham: University of Birmingham, 2017.
[18] Chae T U, Choi S Y, Kim J W , et al. Recent advances in systems metabolic engineering tools and strategies. Curr Opin Biotechnol, 2017,47:67-82.
pmid: 28675826
[19] Zaslaver A, Bren A, Ronen M , et al. A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nature Methods, 2006,3(8):623-628.
doi: 10.1038/nmeth895 pmid: 16862137
[20] Fernie A R, Carrari F, Sweetlove L J . Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr Opin Plant Biol, 2004,7:254-261.
[21] Shimada T, Yamazaki Y, Tanaka K , et al. The whole set of constitutive promoters recognized by RNA polymerase RpoD holoenzyme of Escherichia coli. PLoS One, 2014,9(3):e90447. doi: 10.1371/journal.pone.0090447.
doi: 10.1371/journal.pone.0090447 pmid: 24603758
[22] Mohedano M L, García-Cayuela T, Pérez-Ramos A , et al. Construction and validation of a mCherry protein vector for promoter analysis in Lactobacillus acidophilus. J Ind Microbiol Biotechnol, 2015,42(2):247-253.
[23] 陈英, 王培娟, 张文君 , 等. mCherry红色荧光标记乳酸菌的融合表达系统构建及应用. 生物工程学报, 2019,35(3):492-504.
Chen Y, Wang P J, Zhang W J , et al. Construction and application of mCherry red fluorescent protein fusion expression system in lactic acid bacteria. Chin J Biotech, 2019,35(3):492-504.
[24] Pietrocola F, Galluzzi L, Bravo-San Pedro J M , et al. Acetyl coenzyme A: a central metabolite and mecond messenger. Cell Metab, 2015,21:805-821.
pmid: 26039447
[25] Sidoli S, Trefely S, Garcia B A , et al. Integrated analysis of acetyl-CoA and histone modification via mass spectrometry to investigate metabolically driven acetylation. Methods Mol Biol, 2019,1928:125-147.
[26] Shi L, Tu B P . Acetyl-CoA and the regulation of metabolism: mechanisms and consequences. Curr Opin Cell Biol, 2015,33:125-131.
pmid: 25703630
[27] Akram M . Citric acid cycle and role of its intermediates in metabolism. Cell Biochem Biophys, 2014,68(3):475-478.
[28] Hopp A K, Grüter P, Hottiger M O . Regulation of glucose metabolism by NAD + and ADP-ribosylation. Cells, 2019,8, 890. doi: 10.3390/cells8080890.
doi: 10.3390/cells8080890
[29] Tayara H, Tahir M, Chong KT . Identification of prokaryotic promoters and their strength by integrating heterogeneous features. Genomics, 2019, https://doi.org/10.1016/j.ygeno.2019.08.009. In press.
[30] Solovyev V, Salamov A . Automatic annotation of microbial genomes and metagenomic sequences. In metagenomics and its applications in agriculture, biomedicine and environmental studies. Nova Science Publishers, 2011: 61-78.
[1] 卜恺璇,周翠霞,路福平,朱传合. 细菌转录起始调控机制*[J]. 中国生物工程杂志, 2021, 41(11): 89-99.
[2] 朱亚鑫, 段艳婷, 高宇豪, 王籍阅, 张晓梅, 张晓娟, 徐国强, 史劲松, 许正宏. 不同D/L单体比γ-聚谷氨酸的合成与调控[J]. 中国生物工程杂志, 2021, 41(1): 1-11.
[3] 胡益波,皮畅钰,张哲,向柏宇,夏立秋. 丝状真菌蛋白表达系统研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 94-104.
[4] 安明晖,田文,韩晓旭,尚红. 表达HIV单链抗体的重组乳酸杆菌的构建及表型分析 *[J]. 中国生物工程杂志, 2019, 39(10): 1-8.
[5] 史超硕,李登科,曹雪,袁航,张钰文,于江悦,路福平,李玉. 两个不同启动子及其组合对碱性蛋白酶AprE异源表达的影响 *[J]. 中国生物工程杂志, 2019, 39(10): 17-23.
[6] 黄宇,黄书婷,张夕梅,刘堰. 稀有鮈鲫HSP70基因启动子的克隆及功能分析[J]. 中国生物工程杂志, 2019, 39(10): 9-16.
[7] 李亚芳,赵颖慧,刘赛宝,王伟,曾为俊,王金泉,陈洪岩,孟庆文. 鸡OV启动子表达HA对禽流感病毒攻击提供完全保护 *[J]. 中国生物工程杂志, 2018, 38(7): 67-74.
[8] 王嘉祯,姚伦广,王峰,阚云超,罗金萍,黄倩倩,段建平. 家蚕中肠特异启动子P56的克隆及活性分析 *[J]. 中国生物工程杂志, 2018, 38(2): 13-17.
[9] 张玲,王男,金吕华,林荣,杨海麟. 双启动子促进亮氨酸脱氢酶在Bacillus subtilis中表达及发酵研究 *[J]. 中国生物工程杂志, 2018, 38(12): 21-31.
[10] 黄鹏,阎丽萍,张宁,石金磊. 利用GAP启动子在毕赤酵母中组成型表达人鹅型溶菌酶2 *[J]. 中国生物工程杂志, 2018, 38(10): 55-63.
[11] 柴文娟,杨杞,李国婧,王瑞刚. 中间锦鸡儿CiMYB15基因正调控拟南芥黄酮代谢 *[J]. 中国生物工程杂志, 2018, 38(10): 8-19.
[12] 周琳, 汪靓, 高娟, 赵权宇, 魏伟, 孙予罕. 进化与未进化小球藻响应苯酚的转录组学分析[J]. 中国生物工程杂志, 2017, 37(7): 72-79.
[13] 聂永强, 马海燕, 马晴雯. 位点特异整合微环DNA的体内制备[J]. 中国生物工程杂志, 2017, 37(7): 80-87.
[14] 夏惠, 刘磊, 王秀, 沈妍秋, 郭雨伦, 梁东. 苹果6-磷酸山梨醇脱氢酶基因启动子逆境诱导表达特性研究[J]. 中国生物工程杂志, 2017, 37(6): 50-55.
[15] 倪璇, 高金欣, 余传金, 刘铜, 李雅乾, 陈捷. 玉米弯孢叶斑病菌clt-1基因生物信息学分析和启动子的功能鉴定[J]. 中国生物工程杂志, 2017, 37(3): 37-42.