Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2024, Vol. 44 Issue (2/3): 76-84    DOI: 10.13523/j.cb.2306009
    
Discovery of Anticoagulant Active Peptides from the Venom Glands of the Draconarius digitusiformis
HUANG Biao,WEN Qiao,LONG Chenbo,GU Zhixin*()
Chengdu Pepbiomedical Co., Ltd., Chengdu 610219, China
Download: HTML   PDF(1287KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: The venom glands of toxic animals secrete a large number of structurally diverse and functionally rich active peptides, representing a natural treasure trove for peptide drug development. At present, only a small portion of the active peptides from toxic animals have been studied, so there is a need to establish a more efficient method of active peptide discovery. Methods: The anticoagulant peptides were developed by transcriptome sequencing, data analysis and polypeptide selection, peptide preparation by recombinant expression, in vitro activity screening, and in vivo activity evaluation in animal models of the Draconarius digitusiformis. Results: PDBPE-001, an inhibitor of coagulation Factor Xa, was screened. The peptide has a molecular weight of 9 889.82 Da, consisting of 92 amino acid residues and 4 pairs of disulfide bonds. This peptide can be efficiently prepared through recombinant expression, and its inhibitory activity against Factor Xa is concentration dependent, with an IC50 ~ 0.807 μmol/L. In the mouse thrombus model, 30 mg/kg of PDBPE-001 has a good anti-thrombotic effect. Conclusions: A novel Factor Xa inhibitor has been obtained for the first time from the Draconarius digitusiformis, providing a new lead peptide molecule for the development of new anticoagulants.



Key wordsToxic animals      Active peptides      Factor Xa      Anticoagulants     
Received: 05 June 2023      Published: 03 April 2024
ZTFLH:  Q514+.3  
Cite this article:

HUANG Biao, WEN Qiao, LONG Chenbo, GU Zhixin. Discovery of Anticoagulant Active Peptides from the Venom Glands of the Draconarius digitusiformis. China Biotechnology, 2024, 44(2/3): 76-84.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2306009     OR     https://manu60.magtech.com.cn/biotech/Y2024/V44/I2/3/76

Fig.1 Sequence analysis process of venom gland transcriptome
序列名称 序列 功能 分子量/Da 二硫键
PDBPE-001 CKSFIYGGCGGNGNSYSTEEECMEHCGDVLNESTVGTCEQPREA
GPCRAFMISYFFNKSTGKCEEFVYGGCKGNSNNFKSSEECAQTC
GQSA
丝氨酸蛋白酶抑制剂 9 889.82 4
PDBPE-002 DKCEEFVFGGCQGNGNNFNTVEECKQKC 丝氨酸蛋白酶抑制剂 3 457.78 2
PDBPE-003 CMQPAVSGLCLAYFPSWYYNPSTENCQTFMYGGWRKC 丝氨酸蛋白酶抑制剂 4 633.29 2
PDBPE-004 CGCYHMFGYLKSGCKCVVGTSSEFQGICRSKSKCPNS 电压门控钙通道的拮抗剂 4 302.84 3
PDBPE-005 DCEYPPETGDCSALFYRYYFNGEKCEEFVYGGCGANPNNFKTEE
ECMESC
丝氨酸蛋白酶抑制剂,对胰蛋白酶具有强活性(700 IU/mg),对纤溶酶具有中等抑制活性 6 068.57 3
Table 1 Structure and function prediction information of five candidate peptides
Fig.2 Construction of recombinant plasmid PDBPE-001-PET-32a (+)
Fig.3 Identification of recombinant plasmid PDBPE-001-PET-32a (+) Lane M: 10 kb ladder;Lane 1: PDBPE-001 plasmid; Lane 2: PDBPE-001 plasmid digestedby Mlul and HindIII
Fig.4 Expression of peptide PDBPE-001 A: HPLC anallysis of recombinant peptide PDBPE-001 B: SDS-PAGE identification of recombinant peptide PDBPE-001. Lane 1: Bacterial liquid supernatant;Lane 2: Fusion protein PDBPE-001; Lane 3: Digestion of fusion protein PDBPE-001 C: MS identification of recombinant peptide PDBPE-001
序列名称 抑制常数/(nmol/L)
凝血酶 激肽释放酶 Factor Xa Factor XIa
PDBPE-001 NIa NIa NIa 120
PDBPE-002 NIa 962 NIa NIa
PDBPE-003 874 NIa NIa NIa
PDBPE-004 NIa NIa NIa NIa
PDBPE-005 NIa NIa NIa NIa
Table 2 Inhibition of Thrombin、Kallikrein、Factor XIa and Factor Xa by five candidate peptides
Fig.5 Results of PDBPE-001 activity evaluation A:The inhibitory effect of different concentrations of PDBPE-001 on Factor Xa B:IC50 of PDBPE-001 on Factor Xa
Fig.6 Evaluation of antithrombotic efficacy in vivo A:Black tail images of different treatment groups after 24 hours after carrageenan treatment B: Black tail length diagram of different treatment groups after 24 hours of carrageenan treatment C: Black tail ratio of different treatment groups 24 h after carrageenan treatment
[1]   Zhang Y. Why do we study animal toxins? Zoological Research, 2015, 36(4): 183-222.
doi: 10.13918/j.issn.2095-8137.2015.4.183 pmid: 26228472
[2]   聂彩辉, 徐寒梅. 多肽药物的发展现状. 药学进展, 2014, 38(3): 196-202.
[2]   Nie C H, Xu H M. Current development of peptide drugs. Progress in Pharmaceutical Sciences, 2014, 38(3): 196-202.
[3]   吕秋敏, 赖仞. 动物毒素及相关药物研究进展. 药学进展, 2015, 39(12): 897-904.
[3]   Lyu Q M, Lai R. Advances in research on animal toxins and related drugs. Progress in Pharmaceutical Sciences, 2015, 39(12): 897-904.
[4]   高瑞, 姜鸣, 刘霞, 等. 动物毒素多肽类新药创制研究进展. 延安大学学报(医学科学版), 2019, 17(1): 89-93.
[4]   Gao R, Jiang M, Liu X, et al. Research progress in the creation of new drugs of animal toxin peptides. Journal of Yanan University (Medical Science Edition), 2019, 17(1): 89-93.
[5]   王德心. 活性多肽与药物开发. 北京: 中国医药科技出版社, 2008: 6-26.
[5]   Wang D X. Peptides and drug development. Beijing: China Medical Science Press, 2008: 6-26.
[6]   Ghosh S. Peptide therapeutics market: forecast and analysis 2015-2025. Chimica Oggi: International Journal of Chemistry and Biotechnology, 2016, 34(2 Suppl.): V-VII.
[7]   Suranse V, Srikanthan A, Sunagar K. Animal venoms:origin, diversity and evolution. Boca Raton: CRC Press, 2018:1-19.
[8]   Diniz M R V, Paiva A L B, Guerra-Duarte C, et al. An overview of Phoneutria nigriventer spider venom using combined transcriptomic and proteomic approaches. PLoS One, 2018, 13(8): e0200628.
[9]   Yoo J, Dong J Y, Yoo B K. Exenatide: a new agent for the treatment of type 2 diabetes mellitus as adjunctive therapy. Drugs, 2012, 72(12):1679-1707.
doi: 10.2165/11209750-000000000-00000
[10]   Johnson S R, Rikli H G. Aspartic acid isomerization characterized by high definition mass spectrometry significantly alters the bioactivity of a novel toxin from Poecilotheria. Toxins, 2020, 12(4): 207.
[11]   Liao Q Y, Kong X J, Luo G Q, et al. Molecular diversity of peptide toxins in the venom of spider Heteropoda pingtungensis as revealed by cDNA library and transcriptome sequencing analysis. Toxins, 2022, 14(2): 140.
[12]   陈浩, 王永庆, 孟玲, 等. 凝血因子Ⅹa抑制剂研究进展. 药学与临床研究, 2013, 21(6): 655-659.
[12]   Chen H, Wang Y Q, Meng L, et al. Advance in the development of factor Xa inhibitors. Pharmaceutical and Clinical Research, 2013, 21(6): 655-659.
[13]   张科军, 李力, 戴秋云. 富含二硫键多肽毒素的表达与纯化. 中国生物工程杂志, 2013, 33(11): 106-111.
[13]   Zhang K J, Li L, Dai Q Y. Expression and purification of disulfide-rich peptide toxins. China Biotechnology, 2013, 33(11): 106-111.
[14]   宋大祥, 朱明生, 张锋. 中国动物志无脊椎动物第三十九卷蛛形纲蜘蛛目平腹蛛科. 北京: 科学出版社, 2004.
[14]   Song D X, Zhu M S, Zhang F Z, Records of China, volume 39: Invertebrates, Arachnoidea, Arachnoidea, Flatbellied Arachnidae. Beijing: Science Press, 2004.
[15]   Kaiser B. Visions & reflections factor Xa: a promising target for drug development. Cellular and Molecular Life Sciences CMLS, 2002, 59(2): 189-192.
doi: 10.1007/s00018-002-8415-9
[16]   Xing J H, Yang L Y, Li H, et al. Identification of anthranilamide derivatives as potential factor Xa inhibitors: drug design, synthesis and biological evaluation. European Journal of Medicinal Chemistry, 2015, 95: 388-399.
doi: 10.1016/j.ejmech.2015.03.052 pmid: 25839438
[17]   黄园园, 戴秋云. 抗凝血多肽及类肽研究进展. 中国生化药物杂志, 2007, 27(5): 349-352.
[17]   Huang Y Y, Dai Q Y. Study progresses on antithrombotic peptides and pseudopeptides. Chinese Journal of Biochemical Pharmaceutics, 2007, 27(5): 349-352.
[1] QIN Xiao-yong, YU Ai-ping, WANG Wen-wen, BI Jian-jin, GUO Xiao-jun, YUAN Hong-shui, WU Zu-ze, JIN Ji-de, ZHU Bao-cheng. The Antithrombin Activity Detection of EH in Vitro[J]. China Biotechnology, 2011, 31(5): 108-112.
[2] . The Antithrombin Activity Detection of EH in Vitro[J]. China Biotechnology, 2011, 31(05): 0-0.