Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2024, Vol. 44 Issue (2/3): 39-47    DOI: 10.13523/j.cb.2307018
    
Improving the Ability of Bacillus licheniformis to Produce Alkaline Protease by Inactivating Sec Pathway Repressor Protein and Extracellular Proteases
HAO Man,HUI Wei,SHAO Lanying,SHI Chaoshuo,LU Fuping,ZHANG Huitu**()
Laboratory of Applied Microbiology and Enzyme Engineering, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
Download: HTML   PDF(1228KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to investigate the influence of the Sec secretion pathway on alkaline protease production in Bacillus licheniformis, the molecular chaperone-blocking protein gene hrcA and the three extracellular protease genes epr, bpr, and vpr in the genome of B. licheniformis TCCC11470 (BLΔuppΔepsΔpgs) were sequentially deleted. By comparing the alkaline protease activities before and after gene deletion, it was found that the knockout strains TCCC11470ΔhrcA and TCCC11470ΔhrcAΔeprΔbprΔvpr reached alkaline protease activities of 18 521.2 U/mL and 20 048.5 U/mL after 42 hours, respectively, which were 27.9% and 38.5% higher than the control strain BLΔuppΔepsΔpgs (14 478.6 U/mL), respectively. These results indicate that optimizing the Sec secretion pathway can effectively enhance the enzymatic activity of alkaline protease, providing new insights and research strategies for the construction of industrial enzyme production hosts.



Key wordsBacillus licheniformis      Sec secretion pathway      Alkaline protease      HrcA      Extracellular protease     
Received: 13 July 2023      Published: 03 April 2024
ZTFLH:  Q814  
Cite this article:

HAO Man, HUI Wei, SHAO Lanying, SHI Chaoshuo, LU Fuping, ZHANG Huitu. Improving the Ability of Bacillus licheniformis to Produce Alkaline Protease by Inactivating Sec Pathway Repressor Protein and Extracellular Proteases. China Biotechnology, 2024, 44(2/3): 39-47.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2307018     OR     https://manu60.magtech.com.cn/biotech/Y2024/V44/I2/3/39

Fig.1 The processes of expression and secretion of alkaline protease in Bacillus licheniformis
菌株/质粒 特征/用途 来源
菌株
E. coli JM109 质粒扩增 中国科学院微生物研究所
E. coli EC135 pM.Bam 甲基化修饰 中国科学院微生物研究所
BLΔUEP ΔuppΔepsΔpgs;出发菌株 本实验室保藏
BLΔUEPΔhrcA ΔhrcA;hrcA基因缺失 本研究工作
BLΔUEPΔhrcAΔepr Δepr;epr基因缺失 本研究工作
BLΔUEPΔhrcAΔeprΔbpr Δbpr;bpr基因缺失 本研究工作
BLΔUEPΔhrcAΔeprΔbprΔvpr Δvpr;vpr基因缺失 本研究工作
BLΔUEPΔvpr Δvpr;vpr基因缺失 本研究工作
质粒
pTU Kan marker 本实验室保藏
pTU-ΔhrcA Kan marker 本研究工作
pTU-Δepr Kan marker 本研究工作
pTU-Δbpr Kan marker 本研究工作
pTU-Δvpr Kan marker 本研究工作
Table 1 Strains and plasmids used in the study
引物 序列(5'-3') 用途
hrcA-UF CCCTTAACGAATTCCTGCAGCCCGGGATCTTGCAGGTTATCGTCAACGA PCR克隆hrcA框内缺失用上、
hrcA-UR AAGGGATTCCTCCCTTCTGTCACGCCTCTAAGGCGTTCATT 下游同源片段SmaI/XbaI
hrcA-DF ATGAACGCCTTAGAGGCGTGACAGAAGGGAGGAATCCCTTCTT
hrcA-DR TCCACCGCGGTGGCGGCCGCTCTAGAGTACGCTTCATCCTCAACCTGC
epr-UF CCCTTAACGAATTCCTGCAGCCCGGGATCCCTAATGCTGAACCGCTATT 构建敲除载体
epr-UR GGCCTTTGCTGCTGCTTATTGCTTTCCGCTTGA pTU-epr用同源臂SmaI/XbaI
epr-DF AAGCAATAAGCAGCAGCAAAGGCCAAAGTCAA
epr-DR TCCACCGCGGTGGCGGCCGCTCTAGACTTTGTCGGCCATGATCTGAA
bpr-UF CCCTTAACGAATTCCTGCAGCCCGGGTAAGAAACGTGTTTGACCGGGT 构建敲除载体
bpr-UR AGCAAGTGTTATATCAGAATGCCGCTGACCAA pTU-bpr用同源臂SmaI/XbaI
bpr-DF CGGCATTCTGATATAACACTTGCTTTCGCCCGT
bpr-DR TCCACCGCGGTGGCGGCCGCTCTAGAGCGGTATTTCAGCAATGAAGGA
vpr-UF CCCTTAACGAATTCCTGCAGCCCGGGTGAGGATGATGGTATCGACGGT 组成敲除载体
vpr-UR GAAGCAAAGCGAAGCCATTCATACGGAACATTCCT pTU-vpr的同源片段SmaI/XbaI
vpr-DF GTATGAATGGCTTCGCTTTGCTTCGAGCTGTT
vpr-DR TCCACCGCGGTGGCGGCCGCTCTAGACATCGGCAGCCTGATATGTACC
gap-F GTGTCGCTCGTTGACCTTGTGG qRT-PCR,内参基因GAPDH
gap-R CCCATTCATTGTCATACCATGCG
gro-F GCTCGCAACTTCAGCAACAAGC qRT-PCR,靶标基因groEL
gro-R CCCATTCATTGTCATACCATGCG
dnaK-F CAAAGCCGATGAAGCACAGGTG qRT-PCR,靶标基因dnaK
dnaK-R CAGCGTCCACGACATTATCATCG
ap-F CAGAGCTTGAAGTCATGGCTCCTG qRT-PCR,靶标基因aprE
ap-R TTGAGCGGCAGCTTCGACATT
Table 2 Primers used in this study
Fig.2 Construction of the gene knockout strain A: Flow chart of the strategy for constructing the knockout strain B: Verification of gene knockout strain. M: DNA marker; WT: Reference strain; MT: Gene deletion strain
Fig.3 Changes in transcription levels of groEL and dnaK after hrcA deletion
Fig.4 Analysis of biomass and AprE synthesis ability in BLΔUEPΔhrcA
Fig.5 Effect of hrcA deletion on aprE expression level in host
Fig.6 Effect of extracellular protease deletion on the expression of AprE A: Effects of extracellular protease deletion on transcription level and AprE production performance of bacteria B: SDS-PAGE of each knockout strain, lane 1-8 are BLΔUEP,CK,ΔE,ΔB,ΔV,ΔEB,ΔEBV and ΔAprE strains, respectively
[1]   Okuda M, Sumitomo N, Takimura Y, et al. A new subtilisin family: nucleotide and deduced amino acid sequences of new high-molecular-mass alkaline proteases from Bacillus spp. Extremophiles, 2004, 8(3): 229-235.
doi: 10.1007/s00792-004-0381-8
[2]   de Souza P M, de Assis Bittencourt M L, Caprara C C, et al. A biotechnology perspective of fungal proteases. Brazilian Journal of Microbiology, 2015, 46(2): 337-346.
doi: 10.1590/S1517-838246220140359 pmid: 26273247
[3]   Verma A, Singh H, Anwar S, et al. Microbial keratinases: industrial enzymes with waste management potential. Critical Reviews in Biotechnology, 2017, 37(4): 476-491.
doi: 10.1080/07388551.2016.1185388 pmid: 27291252
[4]   Niu D D, Wang Z X. Development of a pair of bifunctional expression vectors for Escherichia coli and Bacillus licheniformis. Journal of Industrial Microbiology & Biotechnology, 2007, 34(5): 357-362.
[5]   Wang J J, Shih J C H. Fermentation production of keratinase from Bacillus licheniformis PWD-1 and a recombinant B. subtilis FDB-29. Journal of Industrial Microbiology and Biotechnology, 1999, 22(6): 608-616.
doi: 10.1038/sj.jim.2900667
[6]   王光强. 枯草芽孢杆菌中Sec分泌途径底物特性及非经典分泌途径的研究. 无锡: 江南大学, 2013.
[6]   Wang G Q. Research on the substrate characteirstics of sec pathway and non-classical protein secretion pathway in Bacillus subtilis. Wuxi: Jiangnan University, 2013.
[7]   de Keyzer J, van der Does C, Driessen A J M. The bacterial translocase: a dynamic protein channel complex. Cellular and Molecular Life Sciences CMLS, 2003, 60(10): 2034-2052.
doi: 10.1007/s00018-003-3006-y
[8]   Yuan G, Wong S L. Isolation and characterization of Bacillus subtilis groE regulatory mutants: evidence for orf39 in the dnaK operon as a repressor gene in regulating the expression of both groE and dnaK. Journal of Bacteriology, 1995, 177(22): 6462-6468.
pmid: 7592421
[9]   Sambrook J, Russell D W. Molecular cloning. laboratory manual. 3rd ed. New York: Cold Spring Harbor Laboratory Press, 2001.
[10]   叶棋浓. 现代分子生物学技术及实验技巧. 北京: 化学工业出版社, 2015.
[10]   Ye Q N. Current molecular biology techniques and tips. Beijing: Chemical Industry Press, 2015.
[11]   Zhou C X, Liu H, Yuan F Y, et al. Development and application of a CRISPR/Cas9 system for Bacillus licheniformis genome editing. International Journal of Biological Macromolecules, 2019, 122: 329-337.
doi: 10.1016/j.ijbiomac.2018.10.170
[12]   国家卫生和计划生育委员会, 国家食品药品监督管理总局. 中华人民共和国国家标准: 食品安全国家标准食品微生物学检验乳酸菌检验 GB 4789.35-2016. 北京: 中国标准出版社, 2017.
[12]   National Health and Family Planning Commission of the People’s Republic of China, National Medical Products Administration of the People’s Republic of China. National Standard (Mandatory) of the People’s Republic of China: Food microbiology inspection Lactic acid bacteria inspection. GB 4789.35-2016. Beijing: Standards Press of China, 2017.
[13]   中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 中华人民共和国推荐性国家标准: 蛋白酶制剂 GB/T 23527-2009. 北京: 中国标准出版社, 2009.
[13]   General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. National Standard (Recommended) of the People’s Republic of China: Proteinase preparations. GB/T 23527-2009. Beijing: Standards Press of China, 2009.
[14]   鲍方名. 巨大芽孢杆菌热休克系统的克隆和操纵子的分析. 南京: 南京师范大学, 2008.
[14]   Bao F M. Cloning and operon analysis of heat shock system of Bacillus megaterium. Nanjing: Nanjing Normal University, 2008.
[15]   Veith B, Herzberg C, Steckel S, et al. The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. Journal of Molecular Microbiology and Biotechnology, 2004, 7(4): 204-211.
[16]   Bashir F, Asgher M, Hussain F, et al. Development and characterization of cross-linked enzyme aggregates of thermotolerant alkaline protease from Bacillus licheniformis. International Journal of Biological Macromolecules, 2018, 113: 944-951.
doi: 10.1016/j.ijbiomac.2018.03.009
[17]   Schumann W. Production of recombinant proteins in Bacillus subtilis. Advances in Applied Microbiology, 2007, 62: 137-189.
[18]   张心怡, 沈镇炎, 段绪果, 等. 芽孢杆菌表达系统研究进展. 基因组学与应用生物学, 2020, 39(7): 3110-3118.
[18]   Zhang X Y, Shen Z Y, Duan X G, et al. The research progress on Bacillus expression system. Genomics and Applied Biology, 2020, 39(7): 3110-3118.
[19]   陈坤. 2709碱性蛋白酶的高产工程菌株构建及应用性能分析. 天津:天津科技大学. 2018.
[19]   Chen K. Construction of the engineering bacteria with high yield of alkaline protease 2709 and its application performance. Tianjin: Tianjin University of Science and Technology, 2018.
[20]   Zhou C X, Yang G C, Zhang L, et al. Construction of an alkaline protease overproducer strain based on Bacillus licheniformis 2709 using an integrative approach. International Journal of Biological Macromolecules, 2021, 193: 1449-1456.
doi: 10.1016/j.ijbiomac.2021.10.208
[21]   Wu S C, Ye R, Wu X C, et al. Enhanced secretory production of a single-chain antibody fragment from Bacillus subtilis by coproduction of molecular chaperones. Journal of Bacteriology, 1998, 180(11): 2830-2835.
pmid: 9603868
[22]   Zhang G Q, Bao P, Zhang Y, et al. Enhancing electro-transformation competency of recalcitrant Bacillus amyloliquefaciens by combining cell-wall weakening and cell-membrane fluidity disturbing. Analytical Biochemistry, 2011, 409(1): 130-137.
doi: 10.1016/j.ab.2010.10.013
[23]   Meddeb-Mouelhi F, Dulcey C, Beauregard M. High transformation efficiency of Bacillus subtilis with integrative DNA using glycine betaine as osmoprotectant. Analytical Biochemistry, 2012, 424(2): 127-129.
doi: 10.1016/j.ab.2012.01.032 pmid: 22387342
[24]   Wu X C, Lee W, Tran L, et al. Engineering a Bacillus subtilis expression-secretion system with a strain deficient in six extracellular proteases. Journal of Bacteriology, 1991, 173(16): 4952-4958.
doi: 10.1128/jb.173.16.4952-4958.1991 pmid: 1907264
[1] WANG Kun, XU Zhi-guo, DING Jian. Synergistic Optimization Control of Carbon Source/Nitrogen Source Concentration for High-yield Spores of Bacillus licheniformis BF-002[J]. China Biotechnology, 2023, 43(2/3): 75-82.
[2] XU Hui, DING Jian, SHI Zhong-ping. Research on a Fed-batch of Nitrogen Source Fermentation Process to Improve the Spores of Bacillus Licheniformis BF-002[J]. China Biotechnology, 2022, 42(3): 47-54.
[3] ZHOU Hui-ying,ZHOU Cui-xia,ZHANG Ting,WANG Xue-yu,ZHANG Hui-tu,JI Yi-zhi,LU Fu-ping. Enhancing the Expression of the Substrate by the Extracellular Secreted Enzymes and Improving the Alkaline Protease Production in Bacillus licheniformis[J]. China Biotechnology, 2021, 41(2/3): 53-62.
[4] SHI Chao-shuo,LI Deng-ke,CAO Xue,YUAN Hang,ZHANG Yu-wen,YU Jiang-yue,LU Fu-ping LI Yu. The Effect on Heterologous Expression of Alkaline Protease AprE by Two Different Promoter and Combinatorial[J]. China Biotechnology, 2019, 39(10): 17-23.
[5] HOU Bing-xiao, LIU Shan-na, WANG Bin-bin, ZHU Hong-ji, QIAO Jian-jun. Advances on Regulatory Mechanism of Heat-shock Proteins[J]. China Biotechnology, 2016, 36(9): 87-93.