Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2024, Vol. 44 Issue (2/3): 153-163    DOI: 10.13523/j.cb.2308011
    
Research Progress on Bismuth-based Antibacterial Nanomaterials
ZHANG Guixue1,DONG Xiaoyi2,PAN Jie3,**(),LI Qiyan3,**()
1 Institute of Pharmacy, Dali University, Dali 671000, China
2 School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
3 Department of Stomatology, The First People’s Hospital of Yunnan Province, Kunming 650032, China
Download: HTML   PDF(675KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Bismuth (Bi), as a heavy metal of low toxicity, has been used to synthesize various nanomaterials with unique structure and physical and chemical properties. The synthesized bismuth-based nanomaterials have the characteristics of good biocompatibility, a favorably high X-ray attenuation coefficient, a long circulation half-life, high stability, excellent light-to-heat conversion efficiency and photocatalytic ability. Due to these properties, bismuth-based nanomaterials are widely used in biomedical fields such as tissue engineering, antibacterial materials and anti-cancer treatment. It is reported that bismuth-based nanomaterials have been made into drugs for the treatment of diseases. Compared with traditional antibacterial drugs, bismuth-based nanomaterials as antibacterial agents can effectively avoid the occurrence of bacterial drug resistance. The properties, antibacterial mechanism and progress in the antibacterial field of bismuth-based nanomaterials are reviewed. Furthermore, the future research direction of bismuth-based antibacterial nanomaterials is proposed.



Key wordsBismuth-based nanomaterials      Antibacterial      Biomedicine      Properties     
Received: 08 August 2023      Published: 03 April 2024
ZTFLH:  Q819  
Cite this article:

ZHANG Guixue, DONG Xiaoyi, PAN Jie, LI Qiyan. Research Progress on Bismuth-based Antibacterial Nanomaterials. China Biotechnology, 2024, 44(2/3): 153-163.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2308011     OR     https://manu60.magtech.com.cn/biotech/Y2024/V44/I2/3/153

类型 尺寸 形状 应用 参考文献
氧化铋(Bi2O3) 60 nm或90 nm 棒状 计算机断层扫描(computed tomography,CT)成像、抗菌 [13?-15]
硫化铋(Bi2S3) 500 nm 海胆状纳米结构 CT成像、超声成像、药物传递、抗菌、癌症治疗 [16?????-22]
硒化铋(Bi2Se3) 200~500 nm(厚度) 矩形纳米片 抗菌、癌症治疗、生物成像 [23??-26]
卤氧化铋(BiOX,X=Cl、Br和I) 100~250 nm(宽度) 线状、片状、多孔片状 抗菌、CT成像、癌症治疗 [27?-29]
铁酸铋(BiFeO3) 10 nm 球状 癌症治疗 [30-31]
钨酸铋(Bi2WO6) 85 nm~7 μm 微球状、花状、片状 CT成像、癌症治疗 [32?-34]
钒酸铋(BiVO4) 10~40 nm(厚度) 片状 抗菌 [35-36]
磷酸铋(BiPO4) 200 nm~12 μm 米状、棒状、立方状、微球状 生物医学设备 [20,37]
氧化铋碳酸盐(BiO)2CO3 20~50 nm (厚度) 片状 癌症治疗 [38-39]
Table 1 Application of different bismuth compounds in biomedicine
Fig.1 Bismuth-based nanomaterials generate active oxygen groups
Fig.2 Classification diagram of antibacterial mechanism of bismuth-based nanomaterials
方法 优缺点 例子 参考文献
金属元素掺杂 优点:调控半导体的光学和电荷动力学特性以及能带结构 通过参杂铋元素构建铋等离子体/Bi4O5Br2纳米片,增强界面电荷转移和 [71-72]
缺点:成本较高,热化学不稳定 光热效应,提高全光谱光催化作用
构建氧空位 优点:扩宽光响应范围,促进光生载流子的分离 通过构建氧空位优化BiOBr的电子结构,提高其BiOBr在近红外下的抗菌活性 [44]
缺点:尚无报道
非金属掺杂 优点:成本低,稳定性更好,较安全 碘离子掺杂的(BiO)2CO3I-BOC对罗丹明B 的降解表现出优异的可见光驱动光催化活性 [71,73]
缺点:非金属元素质量比较轻,掺杂过程较为困难
构建异质结 优点:提高光生载流子分离 由于形成BiFeO3和TiO2 p-n异质结,具有较高电荷分离效率和较强光吸收能力,BiFeO3@TiO2比单独的BiFeO3 [69,74]
缺点:必须探究晶格和能带才能得到稳定、高效的异质结光催化剂,过程更复杂 和TiO2表现出更好的光催化性能
形貌调控 优点:提高比表面积,形成氧缺陷,较易实现,较安全 BiFeO3(BFO)纳米纤维和纳米颗粒,纳米纤维具有更小的带隙和更好的光化性能 [75]
缺点:尚无报道
晶面调控 优点:可实现光生载流子的定向转移 BiVO4材料,(010)晶面比例的提高可以提高光催化性能,在污水处理方面具有广阔的应用前景 [71,76]
缺点:调控较为复杂
Table 2 Modification methods of bismuth-based nanomaterials
[1]   Wang T Q, Jiang Z F, An T C, et al. Enhanced visible-light-driven photocatalytic bacterial inactivation by ultrathin carbon-coated magnetic cobalt ferrite nanoparticles. Environmental Science & Technology, 2018, 52(8): 4774-4784.
doi: 10.1021/acs.est.7b06537
[2]   Allocati N, Masulli M, Alexeyev M F, et al. Escherichia coli in Europe: an overview. International Journal of Environmental Research and Public Health, 2013, 10(12): 6235-6254.
doi: 10.3390/ijerph10126235 pmid: 24287850
[3]   Conlon B P. Staphylococcus aureus chronic and relapsing infections: evidence of a role for persister cells: an investigation of persister cells, their formation and their role in S. aureus disease. BioEssays, 2014, 36(10): 991-996.
doi: 10.1002/bies.201400080 pmid: 25100240
[4]   Koch A, Mizrahi V. Mycobacterium tuberculosis. Trends in Microbiology, 2018, 26(6): 555-556.
doi: S0966-842X(18)30048-9 pmid: 29580884
[5]   Stock I. Tetanus and Clostridium tetani:a brief review. Medizinische Monatsschrift Fur Pharmazeuten, 2015, 38(2): 57-60.
[6]   石决明的抑菌作用研究. 食品文摘, 2002(9): 72.
[6]   Study on bacteriostasis of Haliotis Haliotidis. Food Abstracts, 2002(9): 72.
[7]   Bnyan I A, Aumaima T, Abid H N, et al. Antibacterial activity of carvacrol against different types of bacteria. Journal of Natural Sciences Research, 2014, 4:13-17.
[8]   Mancuso G, Midiri A, Gerace E, et al. Bacterial antibiotic resistance: the most critical pathogens. Pathogens, 2021, 10(10): 1310.
[9]   Xiong Y X, Sun F, Liu P, et al. A biomimetic one-pot synthesis of versatile Bi2S3/FeS2 theranostic nanohybrids for tumor-targeted photothermal therapy guided by CT/MR dual-modal imaging. Chemical Engineering Journal, 2019, 378: 122172.
doi: 10.1016/j.cej.2019.122172
[10]   Theune L E, Buchmann J, Wedepohl S, et al. NIR-and thermo-responsive semi-interpenetrated polypyrrole nanogels for imaging guided combinational photothermal and chemotherapy. Journal of Controlled Release, 2019, 311: 147-161.
doi: 10.1016/j.jconrel.2019.08.035
[11]   Xuan Y, Song X L, Yang X Q, et al. Bismuth particles imbedded degradable nanohydrogel prepared by one-step method for tumor dual-mode imaging and chemo-photothermal combined therapy. Chemical Engineering Journal, 2019, 375: 122000.
doi: 10.1016/j.cej.2019.122000
[12]   Wang Y, Zhao J X, Chen Z, et al. Construct of MoSe2/Bi2Se3 nanoheterostructure: multimodal CT/PT imaging-guided PTT/PDT/chemotherapy for cancer treating. Biomaterials, 2019, 217: 119282.
doi: 10.1016/j.biomaterials.2019.119282
[13]   Chen D X, Wang F, Bi J Q, et al. Controlled synthesis and upconversion luminescence properties of Yb3+/Er3+ Co-doped Bi2O3 nanospheres for optical and X-ray computed tomography imaging. Optical Materials, 2020, 102: 109827.
doi: 10.1016/j.optmat.2020.109827
[14]   Zulkifli Z A, Razak K A, Rahman W N W A, et al. Synthesis and characterisation of bismuth oxide nanoparticles using hydrothermal method: the effect of reactant concentrations and application in radiotherapy. Journal of Physics: Conference Series, 2018, 1082: 012103.
doi: 10.1088/1742-6596/1082/1/012103
[15]   Geoffrion L D, Medina-Cruz D, Kusper M, et al. Bi2O3 nano-flakes as a cost-effective antibacterial agent. Nanoscale Advances, 2021, 3(14): 4106-4118.
doi: 10.1039/d0na00910e pmid: 36132830
[16]   Cheng Y, Chang Y, Feng Y L, et al. Deep-level defect enhanced photothermal performance of bismuth sulfide-gold heterojunction nanorods for photothermal therapy of cancer guided by computed tomography imaging. Angewandte Chemie (International Ed in English), 2018, 57(1): 246-251.
doi: 10.1002/anie.v57.1
[17]   Sang Y, Dai G D, Wang L X, et al. Hydrothermal synthesis of urchin-like Bi2S3 nanostructures for superior visible-light-driven Cr(VI) removal capacity. ChemistrySelect, 2018, 3(25): 7123-7128.
doi: 10.1002/slct.v3.25
[18]   Yao M H, Ma M, Chen Y, et al. Multifunctional Bi2S3/PLGA nanocapsule for combined HIFU/radiation therapy. Biomaterials, 2014, 35(28): 8197-8205.
doi: 10.1016/j.biomaterials.2014.06.010
[19]   Zhu Q H, Gao F, Yang Y Z, et al. Electrochemical preparation of polyaniline capped Bi2S3 nanocomposite and its application in impedimetric DNA biosensor. Sensors and Actuators B: Chemical, 2015, 207: 819-826.
doi: 10.1016/j.snb.2014.10.120
[20]   Shahbazi M A, Faghfouri L, Ferreira M P A, et al. The versatile biomedical applications of bismuth-based nanoparticles and composites: therapeutic, diagnostic, biosensing, and regenerative properties. Chemical Society Reviews, 2020, 49(4): 1253-1321.
doi: 10.1039/C9CS00283A
[21]   Wang W N, Zhang C Y, Zhang M F, et al. Precisely photothermal controlled releasing of antibacterial agent from Bi2S3 hollow microspheres triggered by NIR light for water sterilization. Chemical Engineering Journal, 2020, 381: 122630.
doi: 10.1016/j.cej.2019.122630
[22]   Yu G D, Liu A L, Jin H L, et al. Urchin-shaped Bi2S3/Cu2S/Cu3BiS3 composites with enhanced photothermal and CT imaging performance. The Journal of Physical Chemistry C, 2018, 122(7): 3794-3800.
doi: 10.1021/acs.jpcc.7b12505
[23]   Ouyang J, Wen M, Chen W S, et al. Multifunctional two dimensional Bi(2)Se(3) nanodiscs for combined antibacterial and anti-inflammatory therapy for bacterial infections. Chemical Communications, 2019, 55(33): 4877-4880.
doi: 10.1039/c9cc01129c pmid: 30957120
[24]   Ali Z, Cao C B, Li J L, et al. Effect of synthesis technique on electrochemical performance of bismuth selenide. Journal of Power Sources, 2013, 229: 216-222.
doi: 10.1016/j.jpowsour.2012.11.120
[25]   闫海丽. 多功能纳米微波增敏剂的构建及其在肿瘤精准治疗中的研究. 太原: 山西医科大学, 2022.
[25]   Yan H L. Fabrication and application of multifunctional nano-microwave sensitizers in tumor precision therapy. Taiyuan: Shanxi Medical University, 2022.
[26]   Cheng L, Shen S D, Shi S X, et al. FeSe(2)-decorated Bi(2)Se(3) nanosheets fabricated via cation exchange for Chelator-free (64)Cu-labeling and multimodal image-guided photothermal-radiation therapy. Advanced Functional Materials, 2016, 26(13): 2185-2197.
doi: 10.1002/adfm.v26.13
[27]   Wu G Z, Zhang Y, Sun J Y, et al. Enhancement of bacterial inactivation of BiOBr nanoflower through oxygen vacancy engineering. Applied Surface Science, 2022, 571: 151268.
doi: 10.1016/j.apsusc.2021.151268
[28]   Chen G B, Li Y H, Liu B L, et al. Recent developments in bismuth oxyhalide-based functional nanomaterials for biomedical applications. Biomaterials Science, 2022, 10(20): 5809-5830.
doi: 10.1039/d2bm01182d pmid: 36052551
[29]   Guo Z, Zhu S, Yong Y, et al. Synthesis of BSA-coated BiOI@Bi(2) S(3) semiconductor heterojunction nanoparticles and their applications for radio/photodynamic/photothermal synergistic therapy of tumor. Advanced Materials, 2017, 29(44): 1704136.
[30]   Yang C Y, Chen Y D, Guo W, et al. Bismuth ferrite-based nanoplatform design: an ablation mechanism study of solid tumor and NIR-triggered photothermal/photodynamic combination cancer therapy. Advanced Functional Materials, 2018, 28(18): 1706827.
[31]   Wang Y G, Xu G, Ren Z H, et al. Low temperature polymer assisted hydrothermal synthesis of bismuth ferrite nanoparticles. Ceramics International, 2008, 34(6): 1569-1571.
doi: 10.1016/j.ceramint.2007.04.013
[32]   Hao Y F, Peng B, Si C, et al. PVP-modified multifunctional Bi2WO6 nanosheets for enhanced CT imaging and cancer radiotherapy. ACS Omega, 2022, 7(22): 18795-18803.
doi: 10.1021/acsomega.2c01591
[33]   Cui Z M, Yang H, Wang B, et al. Effect of experimental parameters on the hydrothermal synthesis of Bi2WO6 nanostructures. Nanoscale Research Letters, 2016, 11(1): 190.
[34]   Zhang C, Ren J, Hua J S, et al. Multifunctional Bi2WO6 nanoparticles for CT-guided photothermal and oxygen-free photodynamic therapy. ACS Applied Materials & Interfaces, 2018, 10(1): 1132-1146.
[35]   Sharma R, Singh S, Verma A, et al. Visible light induced bactericidal and photocatalytic activity of hydrothermally synthesized BiVO4 nano-octahedrals. Journal of Photochemistry and Photobiology B: Biology, 2016, 162: 266-272.
doi: 10.1016/j.jphotobiol.2016.06.035
[36]   Zhang L, Chen D, Jiao X L. Monoclinic structured BiVO4 nanosheets: hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties. The Journal of Physical Chemistry B, 2006, 110(6): 2668-2673.
doi: 10.1021/jp056367d
[37]   Wang Y J, Guan X F, Li L P, et al. pH-driven hydrothermal synthesis and formation mechanism of all BiPO4 polymorphs. CrystEngComm, 2012, 14(23): 7907-7914.
doi: 10.1039/c2ce25337b
[38]   Hu X, Sun J H, Li F Y, et al. Renal-clearable hollow bismuth subcarbonate nanotubes for tumor targeted computed tomography imaging and chemoradiotherapy. Nano Letters, 2018, 18(2): 1196-1204.
doi: 10.1021/acs.nanolett.7b04741 pmid: 29297694
[39]   Liang H Y, Yang Y X, Tang J C, et al. Photocatalytic properties of Bi2O2CO3 nanosheets synthesized via a surfactant-assisted hydrothermal method. Materials Science in Semiconductor Processing, 2013, 16(6): 1650-1654.
doi: 10.1016/j.mssp.2013.04.007
[40]   Foote C S. Definition of type I and type II photosensitized oxidation. Photochemistry and Photobiology, 1991, 54(5): 659.
[41]   Ghorbani J, Rahban D, Aghamiri S, et al. Photosensitizers in antibacterial photodynamic therapy: an overview. Laser Therapy, 2018, 27(4): 293-302.
doi: 10.5978/islsm.27_18-RA-01 pmid: 31182904
[42]   Jiang Z Y, Liang X Z, Liu Y Y, et al. Enhancing visible light photocatalytic degradation performance and bactericidal activity of BiOI via ultrathin-layer structure. Applied Catalysis B: Environmental, 2017, 211: 252-257.
doi: 10.1016/j.apcatb.2017.03.072
[43]   Wang W N, Pei P, Chu Z Y, et al. Bi2S3 coated Au nanorods for enhanced photodynamic and photothermal antibacterial activities under NIR light. Chemical Engineering Journal, 2020, 397: 125488.
doi: 10.1016/j.cej.2020.125488
[44]   Sun J Y, Mo S D, Zhang Z, et al. Optimizing the electronic structure of BiOBr via constructing oxygen-rich vacancies for highly efficient NIR light-driven antibacterial activity. Chemical Engineering Journal, 2022, 450: 137980.
doi: 10.1016/j.cej.2022.137980
[45]   韩佳, 勾昱君, 李怡达, 等. 具有光热效应的超疏水表面防覆冰研究. 制冷, 2022, 41(1): 13-18.
[45]   Han J, Gou Y J, Li Y D, et al. Anti-icing of superhydrophobic surfaces with photothermal effect. Refrigeration, 2022, 41(1): 13-18.
[46]   Chen J X, Ye Z Y, Yang F, et al. Plasmonic nanostructures for photothermal conversion. Small Science, 2021, 1(2): 2000055.
[47]   Cheng J, Wang W S, Xu X Y, et al. AgBiS2 nanoparticles with synergistic photodynamic and bioimaging properties for enhanced malignant tumor phototherapy. Materials Science and Engineering: C, 2020, 107: 110324.
doi: 10.1016/j.msec.2019.110324
[48]   Hong L, Liu X M, Tan L, et al. Rapid biofilm elimination on bone implants using near-infrared-activated inorganic semiconductor heterostructures. Advanced Healthcare Materials, 2019, 8(19): e1900835.
[49]   Ren W Z, Lin Z F, Fan Y Z, et al. Programmable biological state-switching photoelectric nanosheets for the treatment of infected wounds. Materials Today Bio, 2022, 15: 100292.
doi: 10.1016/j.mtbio.2022.100292
[50]   Choghazardi Y, Azimian H, Abadi A M, et al. Radiosensitivity enhancement using triptorelin conjugated bismuth sulfide nanoparticles (Bi2S3@BSA) in radiotherapy for breast cancer cells. Journal of Nanomaterials, 2023, 2023: 5485632.
[51]   Zheng X P, Shi J X, Bu Y, et al. Silica-coated bismuth sulfide nanorods as multimodal contrast agents for a non-invasive visualization of the gastrointestinal tract. Nanoscale, 2015, 7(29): 12581-12591.
doi: 10.1039/c5nr03068d pmid: 26145146
[52]   Aviv H, Bartling S, Grinberg I, et al. Synthesis and characterization of Bi2O3/HSA core-shell nanoparticles for X-ray imaging applications. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 2013, 101(1): 131-138.
[53]   Zhang X D, Chen J, Min Y, et al. Metabolizable Bi2Se3 nanoplates: biodistribution, toxicity, and uses for cancer radiation therapy and imaging. Advanced Functional Materials, 2014, 24(12): 1718-1729.
doi: 10.1002/adfm.v24.12
[54]   Graham D Y, Lee S Y. How to effectively use bismuth quadruple therapy: the good, the bad, and the ugly. Gastroenterology Clinics of North America, 2015, 44(3): 537-563.
doi: 10.1016/j.gtc.2015.05.003 pmid: 26314667
[55]   Gorbach S L. Bismuth therapy in gastrointestinal diseases. Gastroenterology, 1990, 99(3): 863-875.
pmid: 2199292
[56]   Wagner S, Gebel M, Haruma K, et al. Bismuth subsalicylate in the treatment of H2 blocker resistant duodenal ulcers: role of Helicobacter pylori. Gut, 1992, 33(2): 179-183.
pmid: 1347278
[57]   Kashef N, Huang Y Y, Hamblin M R. Advances in antimicrobial photodynamic inactivation at the nanoscale. Nanophotonics, 2017, 6(5): 853-879.
doi: 10.1515/nanoph-2016-0189 pmid: 29226063
[58]   Hsu C L, Li Y J, Jian H J, et al. Green synthesis of catalytic gold/bismuth oxyiodide nanocomposites with oxygen vacancies for treatment of bacterial infections. Nanoscale, 2018, 10(25): 11808-11819.
doi: 10.1039/C8NR00800K
[59]   强立. 淀粉样多肽自组装模板限域调控金纳米结构及其光热抗菌研究. 镇江: 江苏大学, 2021.
[59]   Qiang L. Self-assembled template of amyloid peptide regulates gold nanostructures and its photothermal antibacterial activity. Zhenjiang: Jiangsu University, 2021.
[60]   贾文兵. 低熔点Bi金属纳米颗粒的制备及新型响应性能研究. 成都: 西南交通大学, 2020.
[60]   Jia W B. Preparation of low-melting-point Bi metal nanoparticles and study on their new response properties. Chengdu: Southwest Jiaotong University, 2020.
[61]   Li M, Li L Q, Su K, et al. Highly effective and noninvasive near-infrared eradication of a Staphylococcus aureus biofilm on implants by a photoresponsive coating within 20 min. Advanced Science, 2019, 6(17): 1900599.
[62]   Li Y, Liu X M, Tan L, et al. Eradicating multidrug-resistant bacteria rapidly using a multi functional g-C3N4@Bi2S3 nanorod heterojunction with or without antibiotics. Advanced Functional Materials, 2019, 29(20): 1900946.
[63]   Zhou Z L, Xie J, Ma S H, et al. Construction of smart nanotheranostic platform Bi-Ag@PVP: multimodal CT/PA imaging-guided PDT/PTT for cancer therapy. ACS Omega, 2021, 6(16): 10723-10734.
doi: 10.1021/acsomega.1c00225 pmid: 34056226
[64]   Zhao H N, Guan X Y, Zhang F, et al. Rational design of a bismuth oxyiodide (Bi/BiO1-xI) catalyst for synergistic photothermal and photocatalytic inactivation of pathogenic bacteria in water. Journal of Materials Science & Technology, 2022, 100: 110-119.
[65]   王婉妮. 铋基纳米材料的构筑及其对食品中有害重金属和微生物的清除研究. 合肥: 合肥工业大学, 2021.
[65]   Wang W N. Study on construction of bismuth based nanomaterials and removal of harmful heavy metals and microorganisms in food. Hefei: Hefei University of Technology, 2021.
[66]   罗廷炎, 顾瑜, 秦晓飞. 纳米材料的抗菌机制及在口腔感染性疾病中的作用. 中国组织工程研究, 2023, 27(21): 3407-3414.
[66]   Luo T Y, Gu Y, Qin X F. Antibacterial mechanism and application of nanomaterials in oral infectious diseases. Chinese Journal of Tissue Engineering Research, 2023, 27(21): 3407-3414.
[67]   Badireddy A R, Hernandez-Delgadillo R, Sánchez-Nájera R I, et al. Synthesis and characterization of lipophilic bismuth dimercaptopropanol nanoparticles and their effects on oral microorganisms growth and biofilm formation. Journal of Nanoparticle Research, 2014, 16(6): 2456.
[68]   Hernandez-Delgadillo R, Velasco-Arias D, Martinez-Sanmiguel J J, et al. Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation. International Journal of Nanomedicine, 2013, 8: 1645-1652.
doi: 10.2147/IJN.S38708 pmid: 23637533
[69]   任韦舟. 氯氧化铋基光电/光动力纳米生物抗菌材料的制备及性能研究. 昆明: 昆明理工大学, 2022.
[69]   Ren W Z. Preparation and properties of bismuth oxychloride-based photoelectric/photodynamic nano-biological antibacterial materials. Kunming: Kunming University of Science and Technology, 2022.
[70]   罗森. ZnIn2S4纳米材料的改性及光催化产氢特性研究. 徐州: 中国矿业大学(江苏), 2022.
[70]   Luo S. Modification of ZnIn2S4 nanomaterials and study on photocatalytic hydrogen production characteristics. Xuzhou: China University of Mining and Technology, 2022.
[71]   丁德磊. 氧化物半导体纳米材料的改性及其光催化特性研究. 兰州: 兰州大学, 2016.
[71]   Ding D L. Preparation and photocatalytic properties of oxide semiconductor nanomaterials. Lanzhou: Lanzhou University, 2016.
[72]   Dong X Y, Xu L, Ma J H, et al. Enhanced interfacial charge transfer and photothermal effect via in situ construction of atom co-sharing Bi plasmonic/Bi4O5Br2 nanosheet heterojunction towards improved full-spectrum photocatalysis. Chemical Engineering Journal, 2023, 459: 141557.
doi: 10.1016/j.cej.2023.141557
[73]   Shen Z C, Han Q F, Wang X, et al. Green synthesis of I- ions doped (BiO)2CO3 with enhanced visible-light photocatalytic activity. Materials Letters, 2018, 214: 103-106.
doi: 10.1016/j.matlet.2017.11.107
[74]   刘亚子, 丁珊珊, 徐坚, 等. 核壳结构p-n异质结复合光催化剂BiFeO3@TiO2的制备及其在可见光催化降解中的应用. 催化学报, 2017, 38(6): 1052-1062.
doi: 10.1016/S1872-2067(17)62845-6
[74]   Liu Y Z, Ding S S, Xu J, et al. Preparation of a p-n heterojunction BiFeO3@TiO2 photocatalyst with a core-shell structure for visible-light photocatalytic degradation. Chinese Journal of Catalysis, 2017, 38(6): 1052-1062.
doi: 10.1016/S1872-2067(17)62845-6
[75]   李增鹏, 戴剑锋, 成晨, 等. BiFeO3多铁材料形貌与磁光性能调控研究. 材料导报, 2022, 36(11): 47-53.
[75]   Li Z P, Dai J F, Cheng C, et al. Study and control on the morphology and magneto-optical properties of BiFeO3 multiferroic materials. Materials Reports, 2022, 36(11): 47-53.
[76]   史苏琦, 张守臣, 张迪嘉, 等. 钒酸铋晶面调控制备及其降解四环素类抗生素性能研究. 无机盐工业, 2021, 53(11): 114-121.
[76]   Shi S Q, Zhang S C, Zhang D J, et al. Preparation of bismuth vanadate by crystal plane control and its performance in degrading tetracycline antibiotics. Inorganic salt industry, 2021, 53(11): 114-121.
[77]   刘家琴, 吴玉程. 基于BiOX(X=Cl、Br、I)新型高性能光催化材料的最新研究进展. 无机材料学报, 2015, 30(10): 1009-1017.
doi: 10.15541/jim20150060
[77]   Liu J Q, Wu Y C. Recent advances in the high performance BiOX(X=Cl, Br, I) based photo-catalysts. Journal of Inorganic Materials, 2015, 30(10): 1009-1017.
doi: 10.15541/jim20150060
[78]   Guo C F, Zhang J M, Tian Y, et al. A general strategy to superstructured networks and nested self-similar networks of bismuth compounds. ACS Nano, 2012, 6(10): 8746-8752.
doi: 10.1021/nn303467r pmid: 22957709
[79]   Song Y Y, Jiang H J, Bi H K, et al. Multifunctional bismuth oxychloride/mesoporous silica composites for photocatalysis, antibacterial test, and simultaneous stripping analysis of heavy metals. ACS Omega, 2018, 3(1): 973-981.
doi: 10.1021/acsomega.7b01590 pmid: 30023795
[80]   Jin Y, Li F, Li T, et al. Enhanced internal electric field in S-doped BiOBr for intercalation, adsorption and degradation of ciprofloxacin by photoinitiation. Applied Catalysis B: Environmental, 2022, 302: 120824.
doi: 10.1016/j.apcatb.2021.120824
[81]   Cho E C, Chang-Jian C W, Huang J H, et al. Co(2+)-Doped BiOBr(x)Cl(1-x) hierarchical microspheres display enhanced visible-light photocatalytic performance in the degradation of rhodamine B and antibiotics and the inactivation of E. coli. Journal of Hazardous Materials, 2021, 402: 123457.
doi: 10.1016/j.jhazmat.2020.123457
[82]   Bisht N S, Tripathi A H, Pant M, et al. A facile synthesis of palladium nanoparticles decorated bismuth oxybromide nanostructures with exceptional photo-antimicrobial activities. Colloids and Surfaces B: Biointerfaces, 2022, 217: 112640.
doi: 10.1016/j.colsurfb.2022.112640
[83]   Feng T, Liang J L, Ma Z Y, et al. Bactericidal activity and mechanisms of BiOBr-AgBr under both dark and visible light irradiation conditions. Colloids and Surfaces B: Biointerfaces, 2018, 167: 275-283.
doi: 10.1016/j.colsurfb.2018.04.022
[84]   Li Q B, Qin H, Zhao H K, et al. Facile fabrication of a BiOI/TiO2 p-n junction via a surface charge-induced electrostatic self-assembly method. Applied Surface Science, 2018, 457: 59-68.
doi: 10.1016/j.apsusc.2018.06.222
[85]   Bai Y J, Bai H Y, Qu K G, et al. In-situ approach to fabricate BiOI photocathode with oxygen vacancies: understanding the N2 reduced behavior in photoelectrochemical system. Chemical Engineering Journal, 2019, 362: 349-356.
doi: 10.1016/j.cej.2019.01.051
[86]   Ma S H, Luo X, Ran G, et al. Defect engineering of ultrathin 2D nanosheet BiOI/Bi for enhanced photothermal-catalytic synergistic bacteria-killing. Chemical Engineering Journal, 2022, 435: 134810.
doi: 10.1016/j.cej.2022.134810
[87]   Obregón S, Lee S W, Colón G. Exalted photocatalytic activity of tetragonal BiVO4 by Er3+ doping through a luminescence cooperative mechanism. Dalton Transactions, 2014, 43(1): 311-316.
doi: 10.1039/C3DT51923F
[88]   Abo El-Yazeed W S, El-Hakam S A, Salah A A, et al. Fabrication and characterization of reduced graphene-BiVO4 nanocomposites for enhancing visible light photocatalytic and antibacterial activity. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 417: 113362.
doi: 10.1016/j.jphotochem.2021.113362
[89]   Guan H L, Tian Y F, Dong A, et al. Understanding the structural-dependent photocatalytic antibacterial activity: a case study of Ag modified BiVO(4). Nanoscale Research Letters, 2020, 15(1): 152.
[90]   Ma H, Yang X, Tang X N, et al. Self-assembled Co-doped β-Bi2O3 flower-like structure for enhanced photocatalytic antibacterial effect under visible light. Applied Surface Science, 2022, 572: 151348.
doi: 10.1016/j.apsusc.2021.151348
[91]   Qayyum A, Batool Z, Fatima M, et al. Antibacterial and in vivo toxicological studies of Bi2O3/CuO/GO nanocomposite synthesized via cost effective methods. Scientific Reports, 2022, 12: 14287.
doi: 10.1038/s41598-022-17332-7 pmid: 35995797
[92]   廖建良, 吴国祥, 曾令达, 等. 沉香提取物的抑菌活性. 江苏农业科学, 2013, 41(6): 285-287.
[92]   Liao J L, Wu G X, Zeng L D, et al. Antimicrobial activity of Aquilaria resinatum extract. Jiangsu Agricultural Sciences, 2013, 41(6): 285-287.
[93]   Yu X, Chen D, Mu X P, et al. Cu2Se/Bi2S3 nanocomposites as chemodynamic and photothermal agents for synergetic antibacterial therapy. Materials Letters, 2022, 324: 132727.
doi: 10.1016/j.matlet.2022.132727
[94]   Jia H, Wang Z W, Cai R, et al. Fabrication of hierarchical 3D Ag/Bi2S3 nanoflowers for antibacterial application. Journal of Alloys and Compounds, 2022, 912: 165225.
doi: 10.1016/j.jallcom.2022.165225
[1] LONG Hui, QI Zheng, WU Hao. Development Status and Countermeasures of Chongqing Biomedicine Industry——Accelerating the Construction of Biomedical High-tech Parks with the “Talent Chain” as the Driving Force[J]. China Biotechnology, 2023, 43(5): 94-105.
[2] JI Yu-jie, QIN Han, XIANG Xue-rong. Application of Graphene Oxide in Bone Tissue Engineering[J]. China Biotechnology, 2023, 43(4): 71-78.
[3] ZHANG Qi, ZHANG Yi-xia, XUE Cai-li, ZHANG Hui, ZHANG Yun-peng, YANG Da-peng. Research Progress on Reuse of Biomass Resource of Oyster Shells[J]. China Biotechnology, 2022, 42(11): 126-139.
[4] WU Dong,XIAO Feng,YUAN Min,CHEN Yu-bao,ZHANG Hong-xiang. Transformation of Scientific and Technological Achievements in Biomedical Field in China from 2011 to 2020[J]. China Biotechnology, 2022, 42(1/2): 191-201.
[5] TAN Qing-li,LIN Dai-heng,LIU Jia-yuan,LIN Xing-chun. Study on the Benefits of Biomedical Industry in the Guangdong-Hong Kong-Macao Greater Bay Area Based on Grey Comprehensive Correlation Analysis[J]. China Biotechnology, 2021, 41(6): 89-97.
[6] LIANG Ai-ling,LIU Wen-ting,WU Pan,LI Qian,GAO Jian,ZHANG Jie,LIU Wei-dong,JIA Shi-ru,ZHENG Ying-ying. Characterization and Function of Key Amino Acids in Substrate Bingding Center of a Novel Zearalenone Hydrolase from Exophiala aquamarina[J]. China Biotechnology, 2021, 41(10): 19-27.
[7] BAI Jing-yu,LIN Xiao-feng,YIN Zheng-qing. Analysis of the Current Situation and Development Trend of Global Biotechnology Research Based on Bibliometrics[J]. China Biotechnology, 2020, 40(7): 100-109.
[8] MEI Yu-wei,YANG Zi-yun,YU Fan,LONG Xu-wei. Recent Progress on Fermentation and Antibacterial Applications of Surfactin[J]. China Biotechnology, 2020, 40(5): 105-116.
[9] MA Cui-ping,LIU Duo-duo,PAN Bing-ju,SHEN Hui-tao,SONG Ya-jian. Cloning and Characterization of Acetylesterase AesA Derived from Mannan Utilization Gene Cluster of Bacillus sp. N16-5[J]. China Biotechnology, 2020, 40(3): 65-71.
[10] TANG Xin,MAO Xin-fang,MA Bin-yun,GOU Ping. Antimicrobial Peptides: Current Status and Future Challenges[J]. China Biotechnology, 2019, 39(8): 86-94.
[11] Xin-miao WANG,Kang ZHANG,Sheng CHEN,Jing WU. Recombinant Expression and Fermentation Optimization of Dictyoglomus thermophilum Cellobiose 2-Epimerase in Bacillus subtilis[J]. China Biotechnology, 2019, 39(7): 24-31.
[12] Fei WANG,Chun-hui HU,hao YU. Catalytic Mechanism of 6-Hydroxynicotinic Acid 3-Monooxygenase (NicC)[J]. China Biotechnology, 2019, 39(7): 15-23.
[13] Yu-feng XIE,Xue-mei HAN,Fu-ping LU. Expression, Purification and Enzymatic Properties of β-glucosidase from Lactobacillus paracasei[J]. China Biotechnology, 2019, 39(5): 72-79.
[14] ZHU Meng-lu,WANG Xue-yu,LIU Xin,LU Fu-ping,SUN Deng-yue,QIN Hui-min. Heterologous Expression, Purification and Enzymatic Properties of a Novel Leucine 5-Hydroxylase[J]. China Biotechnology, 2019, 39(12): 24-34.
[15] Ding-hao DENG,Yong-le XIAO,Jian-xue TANG,Xing YANG,Rong GAO. Eukaryotic Expression of Porcine IL-17 Gene and its Bioactivity[J]. China Biotechnology, 2018, 38(8): 10-18.