Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2024, Vol. 44 Issue (2/3): 124-133    DOI: 10.13523/j.cb.2308034
    
Progress in Understanding the Interaction between Metabolic Enzymes and RNA
ZHANG Zhuyu,JIANG Na,CHEN Ruibing**()
School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
Download: HTML   PDF(1162KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Cellular metabolic reprogramming plays an important role in maintaining cellular homeostasis, cell growth and proliferation, and is widely involved in pathological processes such as malignant transformation. With the development of high-throughput molecular detection technology, it has been found that some metabolic enzymes can not only participate in the regulation of cellular metabolism by catalyzing a variety of intracellular biochemical reactions, but also bind to RNA molecules. These metabolic enzymes do not have classical RNA-binding domains, and it has been shown that they can regulate the transport, stability, or translation of their binding mRNA through a negative feedback mechanism, thereby linking the regulation of gene expression to cell metabolism. In addition, the metabolites of enzymes may also be involved in the regulation of the interaction between RNA and metabolic enzymes. This study reviews metabolic enzymes with RNA-binding ability, the interaction between metabolic enzymes and RNA, the identification and verification of RNA binding protein, metabolic regulation mechanisms, and how the interaction between these metabolic enzymes and RNA regulates complex cellular activities and the onset and development of disease.



Key wordsRNA binding protein      Metabolic enzymes      Cell metabolism      Proteomics      Mass spectrometry     
Received: 22 August 2023      Published: 03 April 2024
ZTFLH:  Q71  
Cite this article:

ZHANG Zhuyu, JIANG Na, CHEN Ruibing. Progress in Understanding the Interaction between Metabolic Enzymes and RNA. China Biotechnology, 2024, 44(2/3): 124-133.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2308034     OR     https://manu60.magtech.com.cn/biotech/Y2024/V44/I2/3/124

Fig.1 Schematic representation of different RNA-metabolic enzyme interaction modes A: RNA binding may affect the localization of the enzyme to subcellular structures B: When the RNA binds to the enzyme, it can further influence its interaction with other subunits C: RNA can act as a bridge between multiple enzymes within a pathway
基因名称 蛋白质名称 蛋白质功能 与二核苷酸/单核
苷酸的结合情况
ADK 腺苷酸激酶 AMP生物合成 ATP和腺苷
ALDH18A1 1-吡咯啉-5羧酸合成酶 脯氨酸、鸟氨酸和精氨酸的生物合成 ATP和NADP
ALDH6A1 甲基丙二酸-半醛脱氢酶 缬氨酸和嘧啶代谢 NAD(P)/H
ALDOA 果糖二磷酸醛缩酶A 糖酵解
ASS1 精氨酸琥珀酸合酶 精氨酸生物合成 ATP
KAT3 3-犬尿氨酸 -酮戊二酸转氨酶 几种氨基酸的转氨酶活性
CS 柠檬酸合酶 三羧酸循环
DUT 脱氧尿苷5'-三磷酸核苷酸水解酶 核苷酸代谢 dUTP
ENO1 α-烯醇酶 糖酵解
FASN 脂肪酸合酶 脂肪酸合成 NADP/H
FDPS 焦磷酸合酶 法尼基二磷酸盐的形成
GOT2 天冬氨酸转氨酶 氨基酸代谢
HADHB 多功能酶亚基 脂肪酸的氧化
HK2 己糖激酶 糖酵解 ATP
HSD17B10 3-羟基酰基辅酶A脱氢酶 雄激素和雌激素17位β-氧化 NAD/NAD(P)
LTA4H 白三烯A4水解酶 白三烯B4的生物合成
MDH2 苹果酸脱氢酶 三羧酸循环 NAD/H
NME1 核苷二磷酸激酶A 三磷酸核苷的合成 ATP
NQO1 NAD(P)H脱氢酶 解毒途径和维生素K依赖的谷氨酸残基γ-羧化 NAD(P)H
PKM2 丙酮酸激酶 糖酵解 ATP
PPP1CC 丝氨酸/苏氨酸蛋白磷酸酶1 -γ催化亚单位 糖原代谢、肌肉收缩力和蛋白质合成
SUCLG1 琥珀酰辅酶A连接酶(ADP/ GDP形成)亚基α 三羧酸循环 ATP/GTP
TPI1 磷酸丙糖异构酶 糖酵解和糖异生
Table 1 Examples of metabolic enzymes identified as RBP in the RNA interactome studies
Fig.2 The workflow of CLIP-seq
Fig.3 Aconitase1(ACO1)functions as RNA-binding metabolic enzyme A: When iron is deficient, the cuboid iron-sulfur cluster is disaggregated and the inactivated IRP1 binds to the IREs to regulate the intracellular iron concentration B: Under iron-sufficient conditions, IRP1 functions as a cytosolic cisaconitase by assembling a 4Fe-4S cluster
Fig.4 The function of GAPDH as a RNA-binding protein in lymphocytes A: Binding of GAPDH to ARE in the 3'UTR of IFN-γ mRNA inhibits IFN-γ translation in cells B: After activation of T cells and switching to aerobic glycolysis, GAPDH engages primarily in the glycolytic pathway
[1]   Ramanathan M, Porter D F, Khavari P A. Methods to study RNA-protein interactions. Nature Methods, 2019, 16: 225-234.
doi: 10.1038/s41592-019-0330-1 pmid: 30804549
[2]   Hentze M W, Castello A, Schwarzl T, et al. A brave new world of RNA-binding proteins. Nature Reviews Molecular Cell Biology, 2018, 19: 327-341.
doi: 10.1038/nrm.2017.130 pmid: 29339797
[3]   Chen R B, Liu Y, Zhuang H, et al. Quantitative proteomics reveals that long non-coding RNA MALAT1 interacts with DBC1 to regulate p53 acetylation. Nucleic Acids Research, 2017, 45(17): 9947-9959.
doi: 10.1093/nar/gkx600 pmid: 28973437
[4]   Li D, Liu X F, Zhou J, et al. Long noncoding RNA HULC modulates the phosphorylation of YB-1 through serving as a scaffold of extracellular signal-regulated kinase and YB-1 to enhance hepatocarcinogenesis. Hepatology, 2017, 65(5): 1612-1627.
doi: 10.1002/hep.29010 pmid: 28027578
[5]   Cooper T A, Wan L L, Dreyfuss G. RNA and disease. Cell, 2009, 136(4): 777-793.
doi: 10.1016/j.cell.2009.02.011 pmid: 19239895
[6]   Gebauer F, Schwarzl T, Valcárcel J, et al. RNA-binding proteins in human genetic disease. Nature Reviews Genetics, 2021, 22: 185-198.
doi: 10.1038/s41576-020-00302-y pmid: 33235359
[7]   Nussbacher J K, Batra R, Lagier-Tourenne C, et al. RNA-binding proteins in neurodegeneration: Seq and you shall receive. Trends in Neurosciences, 2015, 38(4): 226-236.
doi: 10.1016/j.tins.2015.02.003 pmid: 25765321
[8]   Ciesla J. Metabolic enzymes that bind RNA: yet another level of cellular regulatory network?. Acta Biochimica Polonica, 2006, 53(1): 11-32.
pmid: 16410835
[9]   Castello A, Hentze M W, Preiss T. Metabolic enzymes enjoying new partnerships as RNA-binding proteins. Trends in Endocrinology & Metabolism, 2015, 26(12): 746-757.
[10]   Ovádi J, Srere P A. Macromolecular compartmentation and channeling. International Review of Cytology, 2000, 192: 255-280.
[11]   Robinson J B, Inman L, Sumegi B, et al. Further characterization of the Krebs tricarboxylic acid cycle metabolon. Journal of Biological Chemistry, 1987, 262(4): 1786-1790.
pmid: 2433288
[12]   Robinson J B, Srere P A. Organization of Krebs tricarboxylic acid cycle enzymes in mitochondria. Journal of Biological Chemistry, 1985, 260(19): 10800-10805.
pmid: 4030772
[13]   Baltz A G, Munschauer M, Schwanhäusser B, et al. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Molecular Cell, 2012, 46(5): 674-690.
doi: 10.1016/j.molcel.2012.05.021 pmid: 22681889
[14]   Castello A, Fischer B, Eichelbaum K, et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell, 2012, 149(6): 1393-1406.
doi: 10.1016/j.cell.2012.04.031 pmid: 22658674
[15]   Kwon S C, Yi H, Eichelbaum K, et al. The RNA-binding protein repertoire of embryonic stem cells. Nature Structural & Molecular Biology, 2013, 20: 1122-1130.
doi: 10.1038/nsmb.2638
[16]   Li X, Tian B M, Deng D K, et al. LncRNA GACAT2 binds with protein PKM1/2 to regulate cell mitochondrial function and cementogenesis in an inflammatory environment. Bone Research, 2022, 10: 29.
doi: 10.1038/s41413-022-00197-x pmid: 35296649
[17]   Wang C Q, Li Y M, Yan S, et al. Interactome analysis reveals that lncRNA HULC promotes aerobic glycolysis through LDHA and PKM2. Nature Communications, 2020, 11: 3162.
doi: 10.1038/s41467-020-16966-3 pmid: 32572027
[18]   Li G Y, Liu L, Du W, et al. Local flux coordination and global gene expression regulation in metabolic modeling. Nature Communications, 2023, 14: 5700.
doi: 10.1038/s41467-023-41392-6 pmid: 37709734
[19]   Curtis N J, Jeffery C J. The expanding world of metabolic enzymes moonlighting as RNA binding proteins. Biochemical Society Transactions, 2021, 49(3): 1099-1108.
doi: 10.1042/BST20200664 pmid: 34110361
[20]   Basta M D, Petruk S, Mazo A, et al. Fibrosis-the tale of H3K 27 histone methyltransferases and demethylases. Frontiers in Cell and Developmental Biology, 2023, 11: 1193344.
doi: 10.3389/fcell.2023.1193344
[21]   Nikolaou K C, Vatandaslar H, Meyer C, et al. The RNA-binding protein A1CF regulates hepatic fructose and glycerol metabolism via alternative RNA splicing. Cell Reports, 2019, 29(2): 283-300.e8.
doi: S2211-1247(19)31162-3 pmid: 31597092
[22]   Chu E, Allegra C J. The role of thymidylate synthase as an RNA binding protein. BioEssays, 1996, 18(3): 191-198.
pmid: 8867733
[23]   Matuszyk J. MALAT1-miRNAs network regulate thymidylate synthase and affect 5FU-based chemotherapy. Molecular Medicine, 2022, 28(1): 89.
[24]   Xu D Q, Shao F, Bian X L, et al. The evolving landscape of noncanonical functions of metabolic enzymes in cancer and other pathologies. Cell Metabolism, 2021, 33(1): 33-50.
doi: 10.1016/j.cmet.2020.12.015 pmid: 33406403
[25]   Clingman C C, Deveau L M, Hay S A, et al. Allosteric inhibition of a stem cell RNA-binding protein by an intermediary metabolite. eLife, 2014, 3: e02848.
doi: 10.7554/eLife.02848
[26]   Wang Z M, Hao D, Zhao S Y, et al. Lactate and lactylation: clinical applications of routine carbon source and novel modification in human diseases. Molecular & Cellular Proteomics, 2023, 22(10): 100641.
[27]   Xing S F, Poirier Y. The protein acetylome and the regulation of metabolism. Trends in Plant Science, 2012, 17(7): 423-430.
doi: 10.1016/j.tplants.2012.03.008 pmid: 22503580
[28]   Rigaud V O C, Hoy R C, Kurian J, et al. RNA-binding protein LIN28a regulates new myocyte formation in the heart through long noncoding RNA-H19. Circulation, 2023, 147(4): 324-337.
doi: 10.1161/CIRCULATIONAHA.122.059346
[29]   Bao X C, Guo X P, Yin M H, et al. Capturing the interactome of newly transcribed RNA. Nature Methods, 2018, 15: 213-220.
doi: 10.1038/nmeth.4595 pmid: 29431736
[30]   Trendel J, Schwarzl T, Horos R, et al. The human RNA-binding proteome and its dynamics during translational arrest. Cell, 2019, 176(1-2): 391-403.e19.
doi: S0092-8674(18)31463-6 pmid: 30528433
[31]   Queiroz R M L, Smith T, Villanueva E, et al. Comprehensive identification of RNA-protein interactions in any organism using orthogonal organic phase separation (OOPS). Nature Biotechnology, 2019, 37: 169-178.
doi: 10.1038/s41587-018-0001-2 pmid: 30607034
[32]   Urdaneta E C, Vieira-Vieira C H, Hick T, et al. Purification of cross-linked RNA-protein complexes by phenol-toluol extraction. Nature Communications, 2019, 10: 990.
doi: 10.1038/s41467-019-08942-3 pmid: 30824702
[33]   König J, Zarnack K, Luscombe N M, et al. Protein-RNA interactions: new genomic technologies and perspectives. Nature Reviews Genetics, 2012, 13: 77-83.
doi: 10.1038/nrg3141 pmid: 22251872
[34]   Li J H, Liu S, Zhou H, et al. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Research, 2014, 42(D1): D92-D97.
[35]   Darnell R B. HITS-CLIP: panoramic views of protein-RNA regulation in living cells. Wiley Interdisciplinary Reviews RNA, 2010, 1(2): 266-286.
doi: 10.1002/wrna.v1:2
[36]   Ascano M, Hafner M, Cekan P, et al. Identification of RNA-protein interaction networks using PAR-CLIP. Wiley Interdisciplinary Reviews RNA, 2012, 3(2): 159-177.
doi: 10.1002/wrna.v3.2
[37]   Chu E, Voeller D, Koeller D M, et al. Identification of an RNA binding site for human thymidylate synthase. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(2): 517-521.
[38]   Chu E, Voeller D M, Jones K L, et al. Identification of a thymidylate synthase ribonucleoprotein complex in human colon cancer cells. Molecular and Cellular Biology, 1994, 14(1): 207-213.
doi: 10.1128/mcb.14.1.207-213.1994 pmid: 8264588
[39]   Constable A, Quick S, Gray N K, et al. Modulation of the RNA-binding activity of a regulatory protein by iron in vitro: switching between enzymatic and genetic function? Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(10): 4554-4558.
[40]   Hentze M W, Caughman S W, Rouault T A, et al. Identification of the iron-responsive element for the translational regulation of human ferritin mRNA. Science, 1987, 238(4833): 1570-1573.
pmid: 3685996
[41]   Guo B, Yu Y, Leibold E A. Iron regulates cytoplasmic levels of a novel iron-responsive element-binding protein without aconitase activity. Journal of Biological Chemistry, 1994, 269(39): 24252-24260.
pmid: 7523370
[42]   Hentze M W, Muckenthaler M U, Galy B, et al. Two to tango: regulation of mammalian iron metabolism. Cell, 2010, 142(1): 24-38.
doi: 10.1016/j.cell.2010.06.028 pmid: 20603012
[43]   Zhang D L, Ghosh M C, Rouault T A. The physiological functions of iron regulatory proteins in iron homeostasis - an update. Frontiers in Pharmacology, 2014, 5: 124.
[44]   Luscieti S, Tolle G, Aranda J, et al. Novel mutations in the ferritin-L iron-responsive element that only mildly impair IRP binding cause hereditary hyperferritinaemia cataract syndrome. Orphanet Journal of Rare Diseases, 2013, 8: 30.
doi: 10.1186/1750-1172-8-30 pmid: 23421845
[45]   Walden W E, Selezneva A I, Dupuy J, et al. Structure of dual function iron regulatory protein 1 complexed with ferritin IRE-RNA. Science, 2006, 314(5807): 1903-1908.
pmid: 17185597
[46]   Meyron-Holtz E G, Ghosh M C, Iwai K, et al. Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis. The EMBO Journal, 2004, 23(2): 386-395.
doi: 10.1038/sj.emboj.7600041
[47]   Nagy E, Rigby W F C. Glyceraldehyde-3-phosphate dehydrogenase selectively binds AU-rich RNA in the NAD+-binding region (Rossmann fold). Journal of Biological Chemistry, 1995, 270(6): 2755-2763.
doi: 10.1074/jbc.270.6.2755 pmid: 7531693
[48]   Dollenmaier G, Weitz M. Interaction of glyceraldehyde-3-phosphate dehydrogenase with secondary and tertiary RNA structural elements of the hepatitis A virus 3' translated and non-translated regions. The Journal of General Virology, 2003, 84(Pt 2): 403-414.
doi: 10.1099/vir.0.18501-0
[49]   Mukhopadhyay R, Jia J, Arif A, et al. The GAIT system: a gatekeeper of inflammatory gene expression. Trends in Biochemical Sciences, 2009, 34(7): 324-331.
doi: 10.1016/j.tibs.2009.03.004 pmid: 19535251
[50]   Chang C H, Curtis J D, Maggi L B Jr, et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell, 2013, 153(6): 1239-1251.
doi: 10.1016/j.cell.2013.05.016
[51]   Ryazanov A G, Ashmarina L I, Muronetz V I. Association of glyceraldehyde-3-phosphate dehydrogenase with mono- and polyribosomes of rabbit reticulocytes. European Journal of Biochemistry, 1988, 171(1-2): 301-305.
pmid: 3276518
[52]   Nagy E, Henics T, Eckert M, et al. Identification of the NAD+-binding fold of glyceraldehyde-3-phosphate dehydrogenase as a novel RNA-binding domain. Biochemical and Biophysical Research Communications, 2000, 275(2): 253-260.
pmid: 10964654
[53]   Sirover M A. Pleiotropic effects of moonlighting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in cancer progression, invasiveness, and metastases. Cancer and Metastasis Reviews, 2018, 37(4): 665-676.
doi: 10.1007/s10555-018-9764-7
[54]   Du X L, Matsumura T, Edelstein D, et al. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. The Journal of Clinical Investigation, 2003, 112(7): 1049-1057.
doi: 10.1172/JCI18127
[55]   Ravichandran V, Seres T, Moriguchi T, et al. S-thiolation of glyceraldehyde-3-phosphate dehydrogenase induced by the phagocytosis-associated respiratory burst in blood monocytes. Journal of Biological Chemistry, 1994, 269(40): 25010-25015.
pmid: 7929187
[56]   Kondo S, Kubota S, Mukudai Y, et al. Binding of glyceraldehyde-3-phosphate dehydrogenase to the cis-acting element of structure-anchored repression in ccn2 mRNA. Biochemical and Biophysical Research Communications, 2011, 405(3): 382-387.
doi: 10.1016/j.bbrc.2011.01.034
[57]   Hedstrom L. IMP dehydrogenase-linked retinitis pigmentosa. Nucleosides, Nucleotides & Nucleic Acids, 2008, 27(6): 839-849.
[58]   Mortimer S E, Hedstrom L. Autosomal dominant retinitis pigmentosa mutations in inosine 5'-monophosphate dehydrogenase type I disrupt nucleic acid binding. The Biochemical Journal, 2005, 390(Pt 1): 41-47.
doi: 10.1042/BJ20042051
[59]   Sakti D H, Cornish E E, Nash B M, et al. IMPDH1-associated autosomal dominant retinitis pigmentosa: natural history of novel variant Lys314Gln and a comprehensive literature search. Ophthalmic Genetics, 2023, 44(5): 437-455.
doi: 10.1080/13816810.2023.2215310
[60]   He X Y, Dobkin C, Brown W T, et al. Infantile neurodegeneration results from mutants of 17β-hydroxysteroid dehydrogenase type 10 rather than aβ-binding alcohol dehydrogenase. International Journal of Molecular Sciences, 2023, 24(10): 8487.
[61]   Oerum S, Roovers M, Rambo R P, et al. Structural insight into the human mitochondrial tRNA purine N1-methyltransferase and ribonuclease P complexes. The Journal of Biological Chemistry, 2018, 293(33): 12862-12876.
doi: 10.1074/jbc.RA117.001286
[62]   Rauschenberger K, Schöler K, Sass J O, et al. A non-enzymatic function of 17beta-hydroxysteroid dehydrogenase type 10 is required for mitochondrial integrity and cell survival. EMBO Molecular Medicine, 2010, 2(2): 51-62.
doi: 10.1002/emmm.200900055 pmid: 20077426
[63]   Deutschmann A J, Amberger A, Zavadil C, et al. Mutation or knock-down of 17β-hydroxysteroid dehydrogenase type 10 cause loss of MRPP1 and impaired processing of mitochondrial heavy strand transcripts. Human Molecular Genetics, 2014, 23(13): 3618-3628.
doi: 10.1093/hmg/ddu072 pmid: 24549042
[64]   Xu D Q, Wang Z, Xia Y, et al. The gluconeogenic enzyme PCK1 phosphorylates INSIG1/2 for lipogenesis. Nature, 2020, 580: 530-535.
doi: 10.1038/s41586-020-2183-2
[65]   Li X J, Egervari G, Wang Y G, et al. Regulation of chromatin and gene expression by metabolic enzymes and metabolites. Nature Reviews Molecular Cell Biology, 2018, 19: 563-578.
doi: 10.1038/s41580-018-0029-7 pmid: 29930302
[1] Ruo-hang SUN, Rui-bing CHEN. Advances in Ide.pngication of RNA-binding Proteins Based on Mass Spectrometry[J]. China Biotechnology, 2023, 43(7): 77-87.
[2] JIN Qian, SHI Meng, LIU Zhan-biao, ZHANG Yi, ZHU Si-qing, SHI Jing-jing, ZONG Xing-xing, CHEN Xue-jun, LI Li-qin. Analysis of Differentially Expressed Proteins in the Cervical Spinal Cord of Guinea Pigs Subacutely Exposed to Soman[J]. China Biotechnology, 2023, 43(2/3): 64-74.
[3] DONG Yuan-yuan, BAO Qiu-yu, WANG De-xiang, WEN Hong-tao, YANG Xing-chao, WAN Ning, YE Hui. Advance in Metabolite-mediated Non-enzymatic Post-translational Modifications[J]. China Biotechnology, 2023, 43(10): 43-51.
[4] LIU Ping-yang, LIU Zhan-fang, ZHOU Hong, ZHU Jun, LIU Yao. Application of Biological Mass Spectrometry in Lipidomics Analysis[J]. China Biotechnology, 2023, 43(1): 87-103.
[5] WANG Yu-hang, CHEN Xue-ming, LIU Su-sheng, RUAN Zhi-jun, ZHANG Min, SONG Chun-li, YIN Feng, LI Zi-gang. A Solid-phase Synthesis Method and Purification of Polypeptides[J]. China Biotechnology, 2023, 43(1): 35-41.
[6] Gong CHENG,Si-ming JIAO,Li-shi REN,Cui FENG,Yu-guang DU. Preparation and Composition Analysis of Chitooligosaccharides with Low Degree of Deacetylation by Hydrolysis of Bacillus subtilis Chitosanase[J]. China Biotechnology, 2018, 38(9): 19-26.
[7] Qing-meng LI,Sheng-tao LI,Ning WANG,Xiao-dong GAO. Expression, Purification and Activity Assay of Yeast α-1,2 Mannosyltransferase Alg11[J]. China Biotechnology, 2018, 38(6): 26-33.
[8] LAI Mu-lan, CHEN Xie-lan. Devolopment of Regulation of Protein Lysine Acetylation on Intermediate Metabolism[J]. China Biotechnology, 2017, 37(9): 126-133.
[9] CHEN Juan, YANG Hui-lin, HUANG Yun-hong, LONG Zhong-er. Screening of the Protein Related to Antibiotics Biosynthesis in Micromonospora carbonacea JXNU-1[J]. China Biotechnology, 2016, 36(7): 55-63.
[10] LV Shan-shan, HOU Yun-hua, YAN Meng-jie, ZHONG Yao-hua. Recent Progress in Mutagenesis Strategies and High-yielding Mechanism for Enzyme Production in Industrial Fungi[J]. China Biotechnology, 2016, 36(3): 111-119.
[11] ZHANG Yan-jun, LIU Rong, ZHANG Meng-nan, ZHANG Xiao-long, YUANXiang-fei, MIAO Qing-fang, ZHEN Yong-su, ZHANG Yi-zhi. The Stability Analysis of IL3 Fusion Protein and Contrast Study of Its Biologic Activity Before and After Protein Modification[J]. China Biotechnology, 2013, 33(3): 117-122.
[12] ZHANG Yuan-yuan, HU Qi-meng, WANG Liang-liang, LI Xin-hong. Resent Advances on Phosphoproteomics Researches of Mammalian Sperm Capacitation[J]. China Biotechnology, 2012, 32(04): 76-82.
[13] TIAN Xiao-mei, REN Jian-hong, FANG Cong. Proteomic Analysis of Pichia pastoris GS115 Cultured in Different Carbon Source Mediums[J]. China Biotechnology, 2012, 32(01): 21-29.
[14] GE Wei-feng, CHU Xiao-he, WANG Yong-hong, ZHANG Si-liang. Optimization of Protease Inhibitor Mixture for Protein Extraction from Cells in Proteomics Study of Streptomyces avermitilis[J]. China Biotechnology, 2010, 30(12): 66-71.
[15] . Examination DNA vaccine-binding proteins in the immune cells[J]. China Biotechnology, 2010, 30(10): 0-0.