Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2024, Vol. 44 Issue (2/3): 1-13    DOI: 10.13523/j.cb.2306001
    
Effect of FGFR3 Gene Mutation on Tyrosine Kinase Inhibitor Sensitivity in Bladder Cancer
DENG Lixinxu1,2,CHE Wenan1,2,XU Haibo2,DING Xue1,SUN Yuandong1,**()
1 Hunan University of Science and Technology, Xiangtan 411201, China
2 State and Local Government Joint Engineering Laboratory of Synthetic Biology Medicine and Clinical Application of Key Technologies, Shenzhen Second People’s Hospital, Shenzhen 518036, China
Download: HTML   PDF(2654KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: Bladder cancer cell lines and organoid models with FGFR3 mutations were constructed at different sites first, and then their sensitivity to different tyrosine kinase inhibitors targeting FGFR3 gene mutations was determined. Methods: Cell line models with wild type FGFR3, point mutant FGFR3 (S249C, R248C and Y373C) and FGFR3-TACC3 fusion were established. Eight tyrosine kinase inhibitors were then used to test for differences in drug sensitivity in different stable cells. The phosphorylation level of FGFR3 downstream pathway protein was detected by Western blot analysis to analyze the mechanism of the difference in tyrosine kinase inhibitor (TKI) sensitivity in different stable cells. Organoid models were constructed using bladder cancer patient tissues, and the above experiment was repeated. The sensitivity of different mutant bladder cancer organoids to different TKIs was determined at the organoid level. Results: FGFR3 point mutation R248C and FGFR3-TACC3 fusion increased by 5-10 fold compared with wild type FGFR3 to half of tyrosine kinase inhibitors at the cell line level (P<0.05). Organoids derived from tumor tissue of bladder cancer patients were successfully constructed. This confirmed that the organoid has the organizational and genetic characteristics of the tumor in situ. The FGFR3 point mutations S249C and Y373C did not show significant differences in sensitivity, which can be 1-5 fold different from the wild type. The FGFR3-TACC3 fusion and the FGFR3 point mutation Y373C can significantly alter the sensitivity of cells to drugs at the organoid level. Conclusions: This study successfully constructed cell lines and organoids with different FGFR3 mutations, further demonstrating that different FGFR3 mutations have different sensitivities to tyrosine kinase inhibitors, and that organoids with the FGFR3 point mutation R248C have high sensitivity to all TKI drugs.



Key wordsBladder cancer      FGFR3      Tyrosine kinase inhibitor      Organoids     
Received: 01 June 2023      Published: 03 April 2024
ZTFLH:  R-33  
  Q55  
Cite this article:

DENG Lixinxu, CHE Wenan, XU Haibo, DING Xue, SUN Yuandong. Effect of FGFR3 Gene Mutation on Tyrosine Kinase Inhibitor Sensitivity in Bladder Cancer. China Biotechnology, 2024, 44(2/3): 1-13.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2306001     OR     https://manu60.magtech.com.cn/biotech/Y2024/V44/I2/3/1

试剂 编号 品牌
PageRulerTM Prestained Protein Ladder 26617 Thermo Fisher
Ham’s F-12K(Kaighn’s) 21127030 Gibco
RPMI1640 11875119 Gibco
DMEM 11320082 Gibco
Immobilon-P SQ roll PVDF ISEQ00010 Millipore
0.25% TE 25200072 Gibco
FBS DGF8283 SCIENCELL
PBS B540626-0500 Sangon Biotech
Anti-Anti 15240062 Gibco
Puro P8230 Solarbio
DMSO DMSO ACMEC
Carbinol M116115-10L Aladdin
RAPI R0010 Solarbio
PMSF P0100 Solarbio
All-in-One (100×) P1260 Solarbio
HiTransG A GCD0265400 吉凯基因
CCK8 FC101-04 TransGen Biotech
TRIzol 15596018 Thermo Fisher
Hifair V Reverse Transcriptase 11300ES93 YEASEN
SYBR 11184ES60 YEASEN
PAGE Gel Quick Preparation Kit(7.5%) PG111 Epizyme
PAGE Gel Quick Preparation Kit(12.5%) PG113 Epizyme
SDS-PAGE loading buffer(5×) P0015 Beyotime
Tris-Glycine-SDS running buffer(10×) PS105S Epizyme
TBS/Tween(10×) PS103S Epizyme
Transfer Buffer(10×) PS109S Epizyme
BSA BSA ACMEC
PageRuler Prestained Protein Ladder 26617 Thermo Fisher
FGFR3 rabbit mAb A19052 ABclonal
Erk1/2 rabbit mAb 4695S CST
p-Erk1/2 rabbit mAb 4370S CST
Akt rabbit mAb 4685S CST
p-Akt rabbit mAb 4060S CST
GAPDH nouse mAb AC002 ABclonal
Anti-rabbit IgG-HRP 7074S CST
Anti-mouse IgG-HRP 7076S CST
Omni-ECL SQ202 雅酶
Table 1 The main reagents and their sources
药物 靶点 说明 品牌
Ponatinib BCR-ABL、FLT3、KIT、RET、FGFR1-4、TIE2、
PDGFRA、VEGFR2
FDA已批准临床药物,批准年份:2012年 Selleck
Nintedanib FGFR1-3、VEGFR1-3、PDGFR、SRC family FDA已批准临床药物,批准年份:2014年 Selleck
Erdafitinib Pan-FGFR FDA已批准临床药物,批准年份:2019年 Selleck
Pemigatinib(INCB054828) FGFR1-3 FDA已批准临床药物,批准年份:2020年 Selleck
Infigratinib(BGJ398) FGFR1-3 在研FGFR抑制剂,Ⅲ期 Selleck
TAS-120(Futibatinib) FGFR1-4 在研FGFR抑制剂,Ⅱ期 Selleck
CH-5183284(Debio1347) FGFR1-4 在研FGFR抑制剂,Ⅱ期 Selleck
LY2874455 FGFR1-4、VEGFR2 在研FGFR抑制剂,Ⅰ期 Selleck
Table 2 The main FGFR3 TKI
试剂 终浓度
Advanced DMEM/F-12 培养基
Antibiotic-Antimycotic(100×)
GlutaMAXTM Supplement(100×)
HEPES 10 mmol/L
B-27TM Supplement(50×)
N-Acetylcysteine 1.25 mmol/L
Nicotinamide 10 mmol/L
SB202190 10 mmol/L
A83-01 500 nmol/L
Recombinant Human R-Spondin 1 Protein 500 ng/mL
Human Noggin 100 ng/mL
Y-27632 10 mmol/L
Recombinant Human FGF-2 20 ng/mL
Recombinant Human FGF-10 20 ng/mL
Table 3 Bladder cancer organoid media recipe
Fig.1 FGFR3 mutations are associated with survival in patients with bladder cancer
Fig.2 The expression levels of FGFR3 mRNA in sv-huc-1 FGFR3 OE cell line
Fig.3 The expression levels of FGFR3 and downstream proteins ERK and AKT in sv-huc-1 FGFR3 OE cell line A: The results of the Western blotting of the sv-huc-1 FGFR3 OE cell lines B: The FGFR3 protein expression quantification of sv-huc-1 FGFR3 OE cell lines C: The downstream protein pAKT/AKT quantification of sv-huc-1 FGFR3 OE cell lines D: The downstream protein pERK/ERK Quantification of sv-huc-1 FGFR3 OE cell lines
Fig.4 Drug sensitivity curves of FGFR3-TKIs on sv-huc-1 FGFR3 OE cell lines A: CH5183284 B: Erdafitinib C: LY2874455 D: Nintedanib E: TAS-120
药物 载体 WT S249C R248C Y373C FGFR3-TACC3
CH5183284 18.98 15.55 13.46 11.29 11.49 13.65
Erdafitinib 22.94 24.01 24.94 13.74 17.48 13.38
LY2874455 1.641 1.131 0.898 8 0.179 7 0.977 4 0.564 2
Nintedanib 17.28 13.9 12.52 10.03 13.24 9.581
TAS-120 10.41 13.68 9.434 10.18 24.86 2.762
Table 4 Each FGFR3 TKIs' IC50
Fig.5 Western blotting of FGFR3-TKIs acting on downstream signaling pathway proteins of sv-huc-1 FGFR3 OE stable cell line
Fig.6 HE staining shows that tumor tissue is consistent with the histological characteristics of tumor-derived organoids A: Parental tumors B: Organoid. Scale bar, 50 μm
Fig.7 Immunofluorescence analysis of marker expression in parental tumors and patient-derived organoids Scale bar, 100 μm
Fig.8 Somatic mutations found in tumor tissue and organoid pairs
Fig.9 The expression levels of FGFR3 mRNA in BCO1 FGFR3 OE organoids
Fig.10 The expression levels of FGFR3 in BCO1 FGFR3 OE organoids
Fig.11 Quantification of FGFR3 protein expression in BCO1 FGFR3 OE organoids
Fig.12 Drug sensitivity curves of FGFR3-TKIs on BCO1 FGFR3 OE A. TAS-120 B. Infigratinib C. LY2874455 D. Erdafitinib E. CH5183284 F. Pemigatinib
药物 IC50
载体 WT S249C R248C Y373C FGFR3-TACC3
TAS-120 13.73 9.401 11.17 5.567 11.87 13.36
Infigratinib 5.055 3.815 4.362 3.668 7.971 4.074
LY2874455 2.987 2.373 2.06 0.9247 1.186 2.342
Erdafitinib 16.05 12.87 16.93 7.39 13.51 17.02
CH5183284 17.64 31.14 16.78 20.43 22.76 18.11
Pemigatinib - 23.27 23.94 5.028 - 33.57
Table 5 Each FGFR3 TKIs' IC50
[1]   Sung H, Ferlay J, Siegel R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 2021, 71(3): 209-249.
doi: 10.3322/caac.v71.3
[2]   Sanli O, Dobruch J, Knowles M A, et al. Bladder cancer. Nature Reviews Disease Primers, 2017, 3: 17022.
doi: 10.1038/nrdp.2017.22 pmid: 28406148
[3]   De Santis M, Bellmunt J, Mead G, et al. Randomized phase II/III trial assessing gemcitabine/carboplatin and methotrexate/carboplatin/vinblastine in patients with advanced urothelial cancer who are unfit for cisplatin-based chemotherapy: EORTC study 30986. J Clin Oncol, 2012, 30: 191.
doi: 10.1200/JCO.2011.37.3571 pmid: 22162575
[4]   Scholtes M P, Alberts A R, Iflé I G, et al. Biomarker-oriented therapy in bladder and renal cancer. International Journal of Molecular Sciences, 2021, 22(6): 2832.
[5]   Wu Y M, Su F Y, Kalyana-Sundaram S, et al. Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discovery, 2013, 3(6): 636-647.
doi: 10.1158/2159-8290.CD-13-0050
[6]   Nakanishi Y, Akiyama N, Tsukaguchi T, et al. Mechanism of oncogenic signal activation by the novel fusion kinase FGFR3-BAIAP2L1. Molecular Cancer Therapeutics, 2015, 14(3): 704-712.
doi: 10.1158/1535-7163.MCT-14-0927-T pmid: 25589496
[7]   Shi M J, Meng X Y, Lamy P, et al. APOBEC-mediated mutagenesis as a likely cause of FGFR3 S249C mutation over-representation in bladder cancer. European Urology, 2019, 76(1): 9-13.
doi: 10.1016/j.eururo.2019.03.032
[8]   Tomlinson D C, Baldo O, Harnden P, et al. FGFR3 protein expression and its relationship to mutation status and prognostic variables in bladder cancer. The Journal of Pathology, 2007, 213(1): 91-98.
doi: 10.1002/path.v213:1
[9]   Williams S V, Hurst C D, Knowles M A. Oncogenic FGFR3 gene fusions in bladder cancer. Human Molecular Genetics, 2013, 22(4): 795-803.
doi: 10.1093/hmg/dds486 pmid: 23175443
[10]   Drost J, Clevers H. Translational applications of adult stem cell-derived organoids. Development, 2017, 144(6): 968-975.
doi: 10.1242/dev.140566 pmid: 28292843
[11]   Pauli C, Hopkins B D, Prandi D, et al. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discovery, 2017, 7(5): 462-477.
doi: 10.1158/2159-8290.CD-16-1154
[12]   Fatehullah A, Tan S H, Barker N. Organoids as an in vitro model of human development and disease. Nature Cell Biology, 2016, 18(3):246-254.
doi: 10.1038/ncb3312 pmid: 26911908
[13]   Medle B, Sjdahl G, Eriksson P, et al. Patient-derived bladder cancer organoid models in tumor biology and drug testing: A systematic review. Cancers, 2022, 14(9):10.3390.
doi: 10.3390/cancers14010010
[14]   Yu L, Li Z C, Mei H B, et al. Patient-derived organoids of bladder cancer recapitulate antigen expression profiles and serve as a personal evaluation model for CAR-T cells in vitro. Clinical & Translational Immunology, 2021, 10(2): e1248.
[15]   Li Z C, Qian Y H, Li W J, et al. Human lung adenocarcinoma-derived organoid models for drug screening. iScience, 2020, 23(8): 101411.
[16]   Chandrani P, Prabhash K, Prasad R, et al. Drug-sensitive FGFR3 mutations in lung adenocarcinoma. Annals of Oncology, 2017, 28(3): 597-603.
doi: 10.1093/annonc/mdw636 pmid: 27998968
[17]   Lee S H, Hu W H, Matulay J T, et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell, 2018, 173(2): 515-528.e17.
doi: S0092-8674(18)30297-6 pmid: 29625057
[18]   Harada K, Sakamoto N, Ukai S, et al. Establishment of oxaliplatin-resistant gastric cancer organoids: importance of myoferlin in the acquisition of oxaliplatin resistance. Gastric Cancer, 2021, 24(6): 1264-1277.
doi: 10.1007/s10120-021-01206-4 pmid: 34272617
[19]   Ukai S, Honma R, Sakamoto N, et al. Molecular biological analysis of 5-FU-resistant gastric cancer organoids; KHDRBS 3 contributes to the attainment of features of cancer stem cell. Oncogene, 2020, 39: 7265-7278.
doi: 10.1038/s41388-020-01492-9
[20]   Chell V, Balmanno K, Little A S, et al. Tumour cell responses to new fibroblast growth factor receptor tyrosine kinase inhibitors and identification of a gatekeeper mutation in FGFR3 as a mechanism of acquired resistance. Oncogene, 2013, 32(25): 3059-3070.
doi: 10.1038/onc.2012.319 pmid: 22869148
[1] Li XU, Ruonan YANG, Yue WANG, Huilin SHI, Zhenqi LI, Chenqi JIN, Wei LI, Ping XU. Analysis of the Development Trends of Life and Health Sciences and Technology[J]. China Biotechnology, 2024, 44(1): 32-40.
[2] SHI Jin, LIU Ke, DING Jun-ying. Application and Prospects of Lung Organoid Models in the Study of Infectious Lung Diseases[J]. China Biotechnology, 2023, 43(8): 30-37.
[3] TANG Zi-hui, ZHONG Chang, DUAN Yan-li, MA Rui-yu, ZHOU Ping. Advances in the Construction and Application of Bone Organoids[J]. China Biotechnology, 2023, 43(8): 11-19.
[4] ZHU Xiang, ZHANG Jing-yin, WANG Li-rui. Research and Applications of Human Liver Organoids: Progress and Developments[J]. China Biotechnology, 2023, 43(8): 20-29.
[5] YANG Huan-lian,QIU Fei,WANG Guo-quan,DIAO Yong. Progress in the Research and Application of Tumor Organoids in Drug Screening and Personalized Drug Treatment[J]. China Biotechnology, 2022, 42(6): 47-53.
[6] FENG Xiao-ying,MENG Qian,CHEN Wei,YU Lei,HUANG Wei-ren. Application Progress of Organoids-on-a-chip in Medical Research[J]. China Biotechnology, 2022, 42(1/2): 112-118.
[7] HUANG Sheng, YAN Qi-tao, XIONG Shi-lin, PENG Yi-qi, ZHAO Rui. Construction of CHD5 Gene Overexpressing Lentiviral Vector Based on CRISPR/Cas9-SAM System and the Effect of CHD5 on Proliferation, Migration and Invasion in T24 Cells[J]. China Biotechnology, 2020, 40(3): 1-8.
[8] Yan-ni HAO,Ting LI,Jia-xin FAN,Luo LI,Ling-fang NIU,Li-ping OU,Xiao-hou WU,Chun-li LUO. Effects of shPLCε on Warburg Effect Through CDC25A in T24 Cells[J]. China Biotechnology, 2018, 38(5): 33-39.
[9] Li-yao GOU,Meng-yao LIU,Jing XIA,Qun WAN,Chi-lei SUN,Min TANG,Yan ZHANG. The Effects of Bone Morphogenetic Protein 9(BMP9) on the Proliferation and Migration of Human Bladder Cancer BIU-87 Cells[J]. China Biotechnology, 2018, 38(5): 10-16.
[10] ZHAO Yan, HAO Yan-ni, LIU Nan-jing, LI Ting, WU Xiao-hou, LUO Chun-li. Silence of PLCε Induced by miR-145 Inhibits EMT and Metastasis in Bladder Cancer[J]. China Biotechnology, 2017, 37(3): 27-36.