Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (12): 94-101    DOI: 10.13523/j.cb.2310052
    
Clinical Characteristics and Prognosis of Chronic Myeloid Leukemia and Mononucleosis MDS
ZHANG Feng1,LUO Ze-yi1,ZHENG Qing-qing1,LI Hui-lin2,ZHENG Yu-hao2,LI Li-huang2,SHI Yi-lin2,TANG Jia-ming2,CAI Ru-yu1,LIN Meng1,ZHANG Chen-qing1,**()
1 Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Department of Hematology Fujian Medical University Union Hospital, Fuzhou 350001, China
2 Department of Laboratory Medicine Fujian Medical University, Fuzhou 350122, China
Download: HTML   PDF(918KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Purpose: The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours defines new diagnostic criteria for chronic myelomonocytic leukemia (CMML) and myelodysplastic neoplasms (MDS). This study aims to explore the clinical and molecular characteristics of CMML and MDS patients belonging to these categories. Method: A thorough review of clinical records of 52 patients with increased peripheral blood absolute monocyte count (AMC) and bone marrow pathological hematopoiesis was performed and their diagnoses were revised according to the new criteria. These patients were compared with 48 non-AMC increased MDS (non MDS-Mo) patients. A retrospective analysis of clinical characteristics and prognostic differences of patients with different diagnoses was conducted. Results: Among 52 patients with increased AMC and pathological hematopoiesis, 35 cases were previously diagnosed with CMML, of which 3 cases (8.6%) were revised to acute myeloid leukemia (AML) due to the presence of NPM1 mutation; 17 cases with increased AMC were previously diagnosed with MDS, of which 4 cases (23.52%) were revised to CMML. There was no difference in clinical characteristics and prognosis between CMML patients with AMC ≥ 1.0 × 109/L (32 cases) and AMC<1.0 ×109/L (4 cases). The MDS with monocytosis group (MDS-Mo) showed a difference in the frequency of driving gene mutations from CMML (AMC<1.0×109/L). Compared to the non MDS-Mo group, the MDS-Mo group showed more TP53 mutations and chromosomal karyotypes of -5/5q -, -7/7q -, with a significantly shorter median survival time (3.85 years vs. 19.43 years). Conclusions: Adhering to the 2022 World Health Organization (WHO) standards can better distinguish between CMML and AML, as well as MDS. MDS-Mo patients have characteristic molecular mutations and genetic characteristics, and their prognosis is worse than that of patients with CMML and non MDS-Mo. Therefore, it is recommended to consider MDS-Mo as an independent subtype of MDS.



Key wordsChronic myelomonocytic leukemia      Myelodysplastic syndrome      Mononucleosis      TP53 mutation      Prognosis     
Received: 12 October 2023      Published: 16 January 2024
ZTFLH:  Q354  
Cite this article:

Feng ZHANG, Ze-yi LUO, Qing-qing ZHENG, Hui-lin LI, Yu-hao ZHENG, Li-huang LI, Yi-lin SHI, Jia-ming TANG, Ru-yu CAI, Meng LIN, Chen-qing ZHANG. Clinical Characteristics and Prognosis of Chronic Myeloid Leukemia and Mononucleosis MDS. China Biotechnology, 2023, 43(12): 94-101.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2310052     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I12/94

临床血液生化指标 CMMLa
N=4
CMMLb
N=32
MDSa
N=13
MDSc
N=48
性别(女) 1(25%) 5(15.6%) 5(35.7%) 17(35.4%)
年龄# 63.75±9.80 58.47±17.73 61.58±11.11 54.42±17.52
AMC(×109/L) 0.62±0.09 8.66±7.84*** 0.70±0.14 0.14±0.13###
Monocyte /% 27.9(16.17)* 16.25(5.72) 4.5(6.10)### 14.8(6.17)
BM Blast /% 4.58(4.34) 1.7(9.10) 4.45(4.65) 3.50(6.06)
Neut(×109/L) 2.24(1.36) 9.56(19.88)** 1.94(1.31) 0.65(1.22)##
PLT(×109/L) 40.5(506.75) 104(160.25) 120(103.5) 44(80.25)
WBC(×109/L) 4.21±1.34 38.01±37.85*** 4.23±0.89 2.48±2.37
Hb/ (g/L) 72.50±14.91 78.21±22.28 69.23±17.32 70.23±19.66
Alc(×109/L) 1.42(1.30) 2.25(3.03) 1.27(0.69) 1.06(0.77)
LDH/(U/L) 303(3723) 346(278.5) 394.5(259) 231.0(195)
TBIL/(μmol/L) 21.93±16.58 11.24±5.07** 15.48±7.10 11.91±6.56
IBIL/(μmol/L) 12.88±6.24 7.56±3.30* 9.88±5.47 7.43±4.10
Table 1 Basic clinical information and blood biochemical characteristics of 36 cases of CMML and 61 cases of MDS
Fig.1 Mutation ratio of MDS and CMML-related genes in MDS and CMML
Risk category CMML
N=27
MDS-Mo*
N=13
MDS**
N=43
Very good 0 0 0
Good 21(77.8%) 4(30.8%) 17(39.5%)
Intermediate 3(11.1%) 4(30.8%) 14(32.6%)
High 1(3.7%) 4(30.8%) 6(14.0%)
Very high 2(7.4%) 1(7.6%) 6(14.0%)
Table 2 Results of cytogenetic prognostic scores for CMML and MDS
Fig.2 IPSS-R prognostic risk category clinical outcomes of CMML and MDS A.IPSS-R prognostic risk category of CMML and MDS B. Clinical outcomes of CMML C.Clinical outcomes of MDS
[1]   Khoury J D, Solary E, Abla O, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia, 2022, 36(7): 1703-1719.
doi: 10.1038/s41375-022-01613-1
[2]   Tanaka T N, Bejar R. MDS overlap disorders and diagnostic boundaries. Blood, 2019, 133(10): 1086-1095.
doi: 10.1182/blood-2018-10-844670 pmid: 30670443
[3]   Chan O, Renneville A, Padron E. Chronic myelomonocytic leukemia diagnosis and management. Leukemia, 2021, 35(6): 1552-1562.
doi: 10.1038/s41375-021-01207-3 pmid: 33714974
[4]   Schanz J, Tüchler H, Solé F, et al. New comprehensive cytogenetic scoring system for primary myelodysplastic syndromes (MDS) and oligoblastic acute myeloid leukemia after MDS derived from an international database merge. Journal of Clinical Oncology, 2012, 30(8): 820-829.
doi: 10.1200/JCO.2011.35.6394 pmid: 22331955
[5]   Gurney M, Mangaonkar A A, Lasho T, et al. Somatic TP53 single nucleotide variants, indels and copy number alterations in chronic myelomonocytic leukemia (CMML). Leukemia, 2023, 37(8): 1753-1756.
doi: 10.1038/s41375-023-01964-3 pmid: 37422593
[6]   Kanagal-Shamanna R, Orazi A, Hasserjian R P, et al. Correction to: Myelodysplastic/myeloproliferative neoplasms-unclassifiable with isolated isochromosome 17q represents a distinct clinico-biologic subset: a multi-institutional collaborative study from the Bone Marrow Pathology Group. Modern Pathology, 2022, 35(5): 705.
doi: 10.1038/s41379-021-00985-6
[7]   Arber D A, Orazi A, Hasserjian R P, et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood, 2022, 140(11): 1200-1228.
[8]   Nie Y B, Shao L, Zhang H, et al. Mutational landscape of chronic myelomonocytic leukemia in Chinese patients. Experimental Hematology & Oncology, 2022, 11(1): 32.
[9]   Patnaik M M, Tefferi A. Chronic Myelomonocytic leukemia: 2020 update on diagnosis, risk stratification and management. American Journal of Hematology, 2020, 95(1): 97-115.
doi: 10.1002/ajh.25684 pmid: 31736132
[10]   Cargo C, Cullen M, Taylor J, et al. The use of targeted sequencing and flow cytometry to identify patients with a clinically significant monocytosis. Blood, 2019, 133(12): 1325-1334.
doi: 10.1182/blood-2018-08-867333 pmid: 30606702
[11]   Itzykson R, Fenaux P, Bowen D, et al. Diagnosis and treatment of chronic myelomonocytic leukemias in adults: recommendations from the European hematology association and the European LeukemiaNet. HemaSphere, 2018, 2(6): e150.
doi: 10.1097/HS9.0000000000000150
[12]   曲士强, 潘丽娟, 秦铁军, 等. 单中心109例慢性粒-单核细胞白血病患者的分子学特征分析. 中华血液学杂志, 2023, 44(5): 373-379.
doi: 10.3760/cma.j.issn.0253-2727.2023.05.004 pmid: 37550186
[12]   Qu S Q, Pan L J, Qin T J, et al. Molecular features of 109 patients with chronic myelomonocytic leukemia in a single center. Chinese Journal of Hematology, 2023, 44(5): 373-379.
doi: 10.3760/cma.j.issn.0253-2727.2023.05.004 pmid: 37550186
[13]   Bãnescu C, Tripon F, Muntean C. The genetic landscape of myelodysplastic neoplasm progression to acute myeloid leukemia. International Journal of Molecular Sciences, 2023, 24(6): 5734.
doi: 10.3390/ijms24065734
[14]   Garcia-Manero G. Myelodysplastic syndromes: 2011 update on diagnosis, risk-stratification, and management. American Journal of Hematology, 2011, 86(6): 490-498.
doi: 10.1002/ajh.22047 pmid: 21594886
[15]   Wu J Y, Zhang Y D, Qin T J, et al. IPSS-M has greater survival predictive accuracy compared with IPSS-R in persons ≥ 60 years with myelodysplastic syndromes. Experimental Hematology & Oncology, 2022, 11(1): 73.
[16]   Nazha A, Komrokji R, Meggendorfer M, et al. Personalized prediction model to risk stratify patients with myelodysplastic syndromes. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 2021, 39(33): 3737-3746.
doi: 10.1200/JCO.20.02810
[17]   Cumbo C, Tota G, Anelli L, et al. TP53 in myelodysplastic syndromes: recent biological and clinical findings. International Journal of Molecular Sciences, 2020, 21(10): 3432.
doi: 10.3390/ijms21103432
[18]   Daver N G, Maiti A, Kadia T M, et al. TP53-mutated myelodysplastic syndrome and acute myeloid leukemia: biology, current therapy, and future directions. Cancer Discovery, 2022, 12(11): 2516-2529.
doi: 10.1158/2159-8290.CD-22-0332 pmid: 36218325
[1] Xin-yi TANG, Ya-kun ZHANG, Shuang CHEN, Yu PENG, Ting-ting JIANG, Yao LIU, Zai-lin YANG. Research Progress of Biomarkers for Prognosis Evaluation of HIV- associated Diffuse Large B-cell Lymphoma Patients[J]. China Biotechnology, 2023, 43(12): 24-31.
[2] RAN Long-rong,XUE Ning,WANG Jian-rong,DU Ying-jian,MAO Jin-ju,ZHOU Quan-you YANG Zai-lin. Prognostic Significance of Peripheral Blood Lymphocyte Subsets in Patients with Hematologic Malignancies[J]. China Biotechnology, 2019, 39(9): 50-57.