Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (8): 104-113    DOI: 10.13523/j.cb.20190814
    
Research Progress in Ulvan Lyase
HU Fu1,LI Qian1,ZHU Ben-Wei1,**(),NING Li-Min2,YAO Zhong1,SUN Yun1,DU Yu-guang3
1 College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
2 College of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
3 State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
Download: HTML   PDF(3271KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The ulvan is consisted of 3-sulfated rhamnose, glucuronic acid, iduronic acid and ran-domly ranged xylose. The polysaccharide and the oligosaccharides degraded from ulvan have been widely used in medical and food industries. In order to promote the utilization of ulvan and ulvan lyase, this review summarized the source, classification, sequence and evolutionary relationship, biochemical characteristics, structure and mechanism of ulvan lyase. Therefore, this review would provide help to the related researchers.



Key wordsUlvan lyase      Classification      Characteristics and structure      Catalytic mechanism     
Received: 14 January 2019      Published: 18 September 2019
ZTFLH:  Q55  
Corresponding Authors: Ben-Wei ZHU     E-mail: zhubenwei@njtech.edu.cn
Cite this article:

HU Fu,LI Qian,ZHU Ben-Wei,NING Li-Min,YAO Zhong,SUN Yun,DU Yu-guang. Research Progress in Ulvan Lyase. China Biotechnology, 2019, 39(8): 104-113.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190814     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I8/104

Fig.1 The structural characteristics of ulvan polysaccharides
Fig.2 The phylogenetic analysis of ulvan lyases from different PL families
GeneBank 来源 家族 分子量(kDa) 最适温度 最适pH 产物 文献
BAY00694.1 Alteromonas sp. KUL17 PL24 55(110.85) - - DP2,4,6 [12]
BAY00693.1 Glaciecola sp. KUL10 PL24 112.74 - -
BAY00695.1 Alteromonas sp. KUL42 PL24 111.23 - - -
AMA19991.1 Alteromonadales sp. LOR_107 PL24 59.64 40 8 DP2,4 [13]
AMA19992.1 Pseudoalteromonas sp. PLSV_3875 PL24 59 (59.62 ) 35 8 DP2,4 [14]
WP_033186955.1 Pseudoalteromonas sp. PLSV_3925 PL24 111.4 - - - [12]
WP_032096165.1 Alteromonadales sp. LOR_61 PL24 110.9 - - - [15]
WP_033186995.1 Pseudoalteromonas sp. PLSV_3936 PL25 54.28 - - DP2,4 [17]
WP_052010178.1 Alteromonadales sp. LOR_29 PL25 52 (53.72) 45 7.5 DP2,4 [15]
WP_036580476.1 Nonlabens ulvanivorans NLR_492 PL25 55 (53.61) - - -
CDF79931.1 Formosa agariphila KMM 3901T PL28 54.73 29.5 8.5 DP2,4 [18]
KEZ94336.1 Nonlabens ulvanivorans NLR48 PL28 30 (33.43 ) - - - [21]
AEN28574.1 Nonlabens ulvanivorns NLR42 PL28 46 (58.96 ) 50 9 DP2-6 [19]
CDF79930.1 Formosa agariphila KMM 3901 新族 69.31 40 8 DP2,4 [16]
Table 1 The comparison of ulvan lyases from different PL families
Fig.3 The three-dimensional structures of ulvan lyases from different PL families (a) PLSV_3936 (b) LOR_107 (c) NLR48
Fig.4 The catalytic mechanism of ulvan lyases from different PL families (a) LOR_107 (b) PLSV_3936 (c) NLR_48
[1]   Lahaye M, Robic A . Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules, 2007,8(6):1765-1774.
[2]   Lahaye M, Ray B . Cell-wall polysaccharides from the marine green alga Ulva “rigida” (Ulvales, Chlorophyta)-NMR analysis of ulvan oligosaccharides. Carbohydrate Research, 1996,283(283):161-173.
[3]   Audrey R, Gaillard C, Sassi J F , et al. Ultrastructure of ulvan: a polysaccharide from green seaweeds. Biopolymers, 2009,91(8):652-664.
[4]   Qi H M, Zhao T T, Zhang Q B , et al. Antioxidant activity of different molecular weight sulfated polysaccharides from Ulva pertusaKjellm (Chlorophyta). Journal of Applied Phycology, 2005,17(6):527-534.
doi: 10.1007/s10811-005-9003-9
[5]   Yu P Z, Zhang Q B, Li N , et al. Polysaccharides from Ulva pertusa(Chlorophyta) and preliminary studies on their antihyperlipidemia activity. Journal of Applied Phycology, 2003,15(1):21-27.
doi: 10.1023/A:1022997622334
[6]   Aboura?cha E, Alaoui-Talibi Z, Boutachfaiti R , et al. Induction of natural defense and protection against Penicillium expansum and Botrytis cinerea in apple fruit in response to bioelicitors isolated from green algae. Scientia Horticulturae, 2015,181:121-128.
[7]   Brading J E, Georgplant M M T, Hardy D M . The polysaccharide from the alga Ulva lactuca. Purification, hydrolysis, and methylation of the polysaccharide. Journal of the Chemical Society, 1954,2(1):319-324.
[8]   McKinnel J P, Percival E . The acid polysaccharide from the green seaweed, Ulva lactuca. Journal of the Chemical Society (Resumed). 1962, 2082-2083.
[9]   Quemener B, Lahaye M, Bobin-Dubigeon C . Sugar determination in ulvans by a chemical-enzymatic method coupled to high performance anion exchange chromatography. Journal of Applied Phycology, 1997,9(2):179-188.
[10]   Lahaye M, Inizan F, Vigouroux J . NMR analysis of the chemical structure of ulvan and of ulvan-boron complex formation. Carbohydrate Polymers, 1998,36(2):239-249.
[11]   Lahaye M . NMR spectroscopic characterisation of oligosaccharides from two Ulva rigida ulvan samples (Ulvales, Chlorophyta) degraded by a lyase. Carbohydrate Research, 1998,314(1-2):1-12.
[12]   He C, Muramatsu H, Kato S I . Characterization of an Alteromonas long-type ulvan lyase involved in the degradation of ulvan extracted from Ulva ohnoi. Bioscience Biotechnology Biochemistry, 2017,81(11):1-7.
[13]   Ulaganathan T S, Helbert W, Kopel M , et al. Structure-function analyses of a PL24 family ulvan lyase reveal key features and suggest its catalytic mechanism. Journal of Biological Chemistry, 2018, 293:jbc.RA117.001642.
[14]   Qin H M, Xu P P, Guo Q Q , et al. Biochemical characterization of a novel ulvan lyase from Pseudoalteromonas sp. strain PLSV. RSC Advances. 2018,8(5):2610-2615.
[15]   Foran E, Buravenkov V, Kopel M , et al. Functional characterization of a novel “ulvan utilization loci” found in Alteromonas sp. LOR genome. Algal Research, 2017,25:39-46.
[16]   Konasani V R, Jin C, Karlsson N G , et al. A novel ulvan lyase family with broad-spectrum activity from the ulvan utilisation loci of Formosa agariphila KMM 3901. Scientific Reports, 2018,8(1):14713-14723.
[17]   Ulaganathan T, Boniecki M T, Foran E , et al. New ulvan-degrading polysaccharide lyase family: structure and catalytic mechanism suggests convergent evolution of active site architecture. ACS Chemical Biology, 2017,12(5):1269-1280.
[18]   Reisky L, Stanetty C, Mihovilovic M D , et al. Biochemical characterization of an ulvan lyase from the marine flavobacterium Formosa agariphila KMM 3901T. Applied Microbiology & Biotechnology, 2018,102(16):6987-6996.
[19]   Collén P N, Sassi J F, Rogniaux H , et al. Ulvan lyases isolated from the Flavobacteria Persicivirga ulvanivorans are the first members of a new polysaccharide lyase family. Journal of Biological Chemistry, 2011,286:42063-42071.
[20]   Lahaye M, Brunel M, Bonnin E . Fine chemical structure analysis of oligosaccharides produced by an ulvan-lyase degradation of the water-soluble cell-wall polysaccharides from Ulva sp, (Ulvales, Chlorophyta). Carbohydrate Research, 1997,304(3-4):325-333.
[21]   Ulaganathan T S, Banin E, Helbert W , et al. Structural and functional characterization of PL28 family ulvan lyase NLR48 from Nonlabens ulvanivorans. Journal of Biological Chemistry, 2018,293:11564-11573.
[22]   Coste O, Malta E J, José C L , et al. Production of sulfated oligosaccharides from the seaweed Ulva sp. using a new ulvan-degrading enzymatic bacterial crude extract. Algal Research, 2015,10(6/07):224-231.
[23]   Garron M L, Cygler M . Uronic polysaccharide degrading enzymes. Current Opinion in Structural Biology, 2014,28:87-95.
[24]   Gacesa P . Alginate-modifying enzymes: A proposed unified mechanism of action for the lyases and epimerases. Febs Letters, 1987,212(2):199-202.
[25]   李莎兰, 洪亮, 李诚博 , 等. 绿藻水溶性多糖的研究概况和进展. 海洋科学, 2016(9):145-151.
[25]   Li S L, Liang H, Li C B , et al. The research progress of water-soluble polysaccharides from green alga. Marine Science, 2016,40(9):145-151.
[26]   Konasani V R, Jin C, Karlsson N G , et al. Ulvan lyase from Formosa agariphila and its applicability in depolymerisation of ulvan extracted from three different Ulva species. Algal Research, 2018,36:106-114.
[27]   Cesário M T, Fonseca R D, Marques M M , et al. Marine algal carbohydrates as carbon sources for the production of biochemicals and biomaterials. Biotechnology Advances, 2018,36(3):798-817.
[1] Fei WANG,Chun-hui HU,hao YU. Catalytic Mechanism of 6-Hydroxynicotinic Acid 3-Monooxygenase (NicC)[J]. China Biotechnology, 2019, 39(7): 15-23.
[2] YANG Jie, YE Xiu-yun, YAN Fen, GAO Zhen-na, LI Ren-kuan, LV Wen-jing, LIN Juan. Screening and Classification of a Thermophilic Cellulase-producing Trichoderma sp. Strain and the Study of the Enzyme Properties[J]. China Biotechnology, 2012, 32(07): 60-65.
[3] WANG Nian, ZHUANG Zhen-hua, TANG Jun, SU Liang-liang. Classification of Gene Expression Data Based on Fiedler Vector[J]. China Biotechnology, 2010, 30(12): 82-86.
[4] LI Zhao-Feng, GU Zheng-Biao, DU Guo-Cheng, TUN Jing, CHEN Jian. Structural Characteristics and Catalytic Mechanisms of Cyclodextrin Glycosyltransferase[J]. China Biotechnology, 2010, 30(06): 144-150.
[5] . [J]. China Biotechnology, 1997, 17(4): 31-33,32,34,39.