Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (6): 63-69    DOI: 10.13523/j.cb.20180609
    
Study on the Optimal Scale-down Model for Cell Growth and Mab-A Production of Sp2/0 Cells
Guo-qiang WANG1,2,*,Jian-ping LIU1,Hang ZHOU2,**()
1 School of Life Sciences Fudan University, Shanghai 200438, China
2 WuXi Biologics (Shanghai) Co., Ltd., Shanghai 200131, China
Download: HTML   PDF(1119KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Five different kinds of basal media were screened in batch mode to find out the optimal basal medium for cell growth of Sp2/0. The peak viable cell density in batch mode was 13.12×10 6cells/ml, and the culture duration was 7 days. Various cell culture conditions including different shaking speeds, concentrations of carbon dioxide, glutamine replaced by GlutaMAX TM, addition of trace element and different culture temperatures were studied in batch mode as well. Few different cell growth were found with these conditions except for culture temperatures, which leaded to different peak viable cell concentrations, different viabilites and then different culture durations. Fourteen kinds of combinations of feed media were screened in fed-batch mode. The peak viable cell densities were up to 30×10 6cells/ml, the culture duration were around 9 days, and the highest daily Mab-A production was 27.20mg/L. Batch re-feed mode was used in the third part of the study. The peak viable cell density was 50.42×10 6cells/ml, the culture duration was 14 days, and the highest daily Mab-A production (141.10mg/L) was 5.19 fold greater than in fed-batch mode. These studies suggest batch re-feed mode is the optimal scale-down mode for cell growth and Mab-A production of Sp2/0 cells.



Key wordsSp2/0      Scale-down mode      Batch re-feed     
Received: 24 December 2017      Published: 06 July 2018
ZTFLH:  Q256  
Corresponding Authors: Guo-qiang WANG,Hang ZHOU     E-mail: zhou_hang@wuxiapptec.com
Cite this article:

Guo-qiang WANG,Jian-ping LIU,Hang ZHOU. Study on the Optimal Scale-down Model for Cell Growth and Mab-A Production of Sp2/0 Cells. China Biotechnology, 2018, 38(6): 63-69.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180609     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I6/63

Medium code Vendor Category
A,B ThermoFisher Basal medium
C,D,E GE
F,G ThermoFisher Feed medium
H,I,J,K GE
L Merck
M Kerry
N,O Lonza
P,Q Kerry Hydrolysate
R Merck Additive
Dexamethasone Merck
GlutaMAXTM ThermoFisher
Table 1 Medium information
Culture No. Medium Code Condition
SF1,5 A+C(50%+50%) Control
SF2,6 D
SF3,7 B
SF4,8 E
SF9 A+C(50%+50%) 160 RPM
SF10 D
SF11 B
SF12 E
SF13 A+C(50%+50%) 10% CO2
SF14 D
SF15 B
SF16 E
SF17 A+C(50%+50%) 33℃
SF19 E
SF18 A+C(50%+50%) 35℃
SF20 E
SF21 A+C(50%+50%) Trace element
SF22 E
SF23 A+C(50%+50%) GlutaMAXTM
SF24 D
SF25 B
SF26 E
Table 2 Conditions for batch culture
Culture No. Medium Code Conditon
SF27 99% F+1% L Feed medium screen
SF28 99% G+1% L
SF29 49.5% F+49.5% G+1% L
SF30 99% H+1% L
SF31 49.5% H+49.5% I+1% L
SF32 99% J+1% L
SF33 80% J+1% L+19% water
SF34 99% K+1% L
SF35 99% J (with 15 g/L P)+1% L
SF36 99% J (with 15 g/L Q)+1% L
SF37 99% N+1% L
SF38 99% M+1% L
SF39 99% O+1% L
SF40 99% J+1% L 36.5℃ shift to
33℃ on day 4
Table 3 Conditions for fed-batch culture
Fig.1 Cell growth (a) and viability (b) in various basal media
SF9 SF10 SF11 SF12 SF13 SF14 SF15 SF16 SF21 SF22 SF23 SF24 SF25 SF26
Peak VCC (106 cells/ml) 7.81 12.44 3.56 12.69 8.50 12.39 4.02 9.90 6.71 12.45 8.77 13.44 3.46 12.85
Culture duration (days) 5 7 4 7 5 7 4 7 5 7 5 7 4 7
Table 4 Influence of shaking speed, CO2, trace element and GlutaMAXTM on cells’ performance
Fig.2 Cell growth (a) and viability (b) under different culture temperatures
Culture
No.
Peak VCC
(106
cells/ml)
Culture
duration
(days)
Titer
(mg/L)
qMab-A,
(pg/cell/
day)
SF27 25.65 7 73.73 0.99
SF28 27.56 7 35.40 0.46
SF29 26.57 7 46.93 0.63
SF30 20.58 7 39.69 0.68
SF31 21.49 7 41.39 0.74
SF32 23.26 7 138.58 1.97
SF33 20.48 8 99.14 1.28
SF34 22.96 6 41.74 0.87
SF35 37.08 9 165.92 1.23
SF36 20.29 8 157.20 1.83
SF37 25.63 6 42.94 0.83
SF38 22.57 6 47.85 1.02
SF39 22.91 6 56.72 1.13
SF40 20.52 8 217.59 2.48
Table 5 Cells’ performance in various feed media
Culture
No.
Peak VCC
(106
cells/ml)
Culture
duration
(days)
Titer
(mg/L)1)
qMab-A,
(pg/cell/
day)
ST1 50.42 14 141.10 2.98
ST2 42.23 14 115.38 2.77
ST3 53.01 14 162.56 3.19
Table 6 Cells’ performance in batch re-feed mode
[1]   Shulman M, Wilde C D, Köhler G . A better cell line for making hybridomas secreting specific antibodies. Nature, 1978,276(5685):269-270.
doi: 10.1038/276269a0 pmid: 714156
[2]   Ghaderi D, Zhang M, Hurtado-Ziola N , et al. Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation. Biotechnology and Genetic Engineering Reviews, 2012,28(1):147-176.
doi: 10.5661/bger-28-147 pmid: 22616486
[3]   甄永占, 赵毓芳, 骆广玲 , 等. 力达霉素在体内外抑制小鼠骨髓瘤细胞系Sp2/0移植成瘤. 基础医学与临床, 2013,33(8):993-997.
[3]   Zhen Y Z, Zhao Y F, Luo G L , et al. Lidamycin inhibits mouse myeloma Sp2/0 in vivo and in vitro. Basic and Clinical Medicine, 2013,33(8):993-997.
[4]   赵宁, 黄永吉, 马广斌 , 等. 鞣花酸对骨髓瘤Sp2/0细胞的作用. 医药导报, 2014,33(10):1321-1325.
[4]   Zhao N, Huang Y J, Ma G B , et al. Effect of ellagic acid on myeloma Sp2/0 cells. Herald of Medicine, 2014,33(10):1321-1325.
[5]   张寒, 梁晓莉, 贾敏 , 等. 白蔹甲醇提取物对骨髓瘤细胞Sp2/0增殖及凋亡的影响. 中药新药与临床药理, 2013,24(03):239-241.
[5]   Zhang H, Liang X L, Jia M , et al. Influence of methanol extract radix ampelopsis on proliferation of myeloma cell line Sp2/0. Traditional Chinese Drug Research and Clinical Pharmacology, 2013,24(03):239-241.
[6]   Zhang J Y, Robinson D . Development of animal-free, protein-free and chemically-defined media for NS0 cell culture. Cytotechnology, 2005,48(1-3):59-74.
doi: 10.1007/s10616-005-3563-z pmid: 19003032
[7]   Whitford W, Manwaring J . Lipids in cell culture media. Application-Specific Technical Information-Application Notes, 2004, 152-154.
[8]   DeZengotita V M, Miller W M, Aunins J G , et al. Phosphate feeding improves high-cell-concentration NS0 myeloma culture performance for monoclonal antibody production. Biotechnology and Bioengineering, 2000,69(5):566-576.
doi: 10.1002/1097-0290(20000905)69:5<566::AID-BIT11>3.0.CO;2-4 pmid: 10898866
[9]   Sherman H, Rothenberg M E . Corning® hybrigro SF TM培养基对提高杂交瘤细胞培养密度和抗体产量的研究 . 中国医药生物技术, 2014,9(4):313-315.
doi: 10.3969/cmba.j.issn.1673-713X.2014.04.015
[9]   Sherman H, Rothenberg M E . Corning® hybrigro SF TM improves hybiodoma cell density and antibody yield . Chin Med Biotechnol, 2014,9(4):313-315.
doi: 10.3969/cmba.j.issn.1673-713X.2014.04.015
[10]   Stützle M, Moll A, Handrick A , et al. Optimized fermentation conditions for improved antibody yield in hybridoma cells. BMC Proceedings, 2013,7(Suppl 6):74-76.
doi: 10.1186/1753-6561-7-S6-P74 pmid: 3981032
[11]   Lu C H, Gonzalez C, Gleason J , et al. A T-flask based screening platform for evaluating and identifying plant hydrolysates for a fed-batch cell culture process. Cytotechnology, 2007,55(1):15-29.
doi: 10.1007/s10616-007-9090-3 pmid: 1317007
[12]   Han Y K, Koo T Y, Lee G M . Enhanced interferon-b production by CHO cells through elevated osmolality and reduced culture temperature. Biotechnol Prog, 2009,25(5):1440-1447.
doi: 10.1002/btpr.234 pmid: 19572287
[13]   Banik G G, Heath C A . Hybridoma growth and antibody production as a function of cell density and specific growth rate in perfusion culture. Biotechnology and Bioengineering, 1995,48(3):289-300.
doi: 10.1002/bit.260480315 pmid: 18623488
[14]   Xu S, Gavin J, Jiang R , et al. Bioreactor productivity and media cost comparison for different intensified cell culture processes. Biotechnol Progress, 2017,33(4):867-878.
doi: 10.1002/btpr.2415 pmid: 27977910
[15]   Villiger-Oberbek A, Yang Y, Zhou W C , et al. Development and application of a high-throughput platform for perfusion-based cell culture processes. Biotechnology, 2015,212:21-29.
doi: 10.1016/j.jbiotec.2015.06.428 pmid: 26197419
[16]   Zhao B, Xie G J, Li R F , et al. Dexamethasone protects normal human liver cells from apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand by upregulating the expression of P-glycoproteins. Molecular Medicine Reports, 2015,12(6):8093-8100.
doi: 10.3892/mmr.2015.4458 pmid: 26496964
[17]   Voisard D, Meuwly F, Ruffieux P A , et al. Potential of cell retention techniques for large-scale high-density perfusion culture of suspended mammalian cells. Biotechnol Bioeng, 2003,83(7):751-765.
doi: 10.1002/bit.10629 pmid: 12701141
[18]   Bonham-Carter J, Shevitz J . A brief history of perfusion biomanufacturing: how high-concentrated cultures will characterize the factory of the future. Bioprocess Int, 2011,9(9):24-30.
[19]   Sun Z, Zhou R, Liang S Y , et al. Hyperosmotic stress in murine hybridoma cells: effects on antibody transcription, translation, posttranslational processing, and the cell cycle. Biotechnol Prog, 2004,20(2):576-589.
doi: 10.1021/bp0342203 pmid: 15059005
[20]   Ju H K, Hwangb S J, Jeon C J , et al. Use of NaCl prevents aggregation of recombinant COMP-Angiopoietin-1 in Chinese hamster ovary cells. Biotechnology, 2009,143(2):145-150.
doi: 10.1016/j.jbiotec.2009.06.017 pmid: 19559063
[21]   Green A, Glassey J . Multivariate analysis of the effect of operating conditions on hybridoma cell metabolism and glycosylation of produced antibody. J Chem Technol Biotechnol, 2015,90(2):303-313.
doi: 10.1002/jctb.4481
[22]   Ozturkt S S, Palsson B . Effects of dissolved oxygen on hybridoma cell growth, metabolism, and antibody production kinetics in continuous culture. Biotechnol Prog, 1990,6(6):437-446.
doi: 10.1021/bp00006a006
[23]   Ha T K, Kim Y G, Lee G M . Effect of lithium chloride on the production and sialylation of Fc-fusion protein in Chinese hamster ovary cell culture. Appl Microbiol Biotechnol, 2014,98(22):9239-9248.
doi: 10.1007/s00253-014-6012-0 pmid: 25132065
[24]   Ducommun P, Ruffieux P A, Stockar U V , et al. The role of vitamins and amino acids on hybridoma growth and monoclonal antibody production. Cytotechnology, 2001,37(2):65-73.
doi: 10.1023/A:1019956013627 pmid: 3449699
[25]   Balcarcel R R, Stephanopoulos G . Rapamycin reduces hybridoma cell death and enhances monoclonal antibody production. Biotechnol Bioeng, 2001,76(1):1-10.
doi: 10.1002/(ISSN)1097-0290
[26]   Rouiller Y , Pe'rilleux A, Marsaut M, et al. Effect of hydrocortisone on the production and glycosylation of an Fc-Fusion protein in CHO cell cultures. Biotechnol Prog, 2012,28(3):803-813.
doi: 10.1002/btpr.1530 pmid: 22535835
[27]   Chung J D, Zabel C, Sinskey A J , et al. Extension of Sp2/0 hybridoma cell viability through interleukin-6 supplementation. Biotechnol Bioeng, 1997,55(2):439-446.
doi: 10.1002/(SICI)1097-0290(19970720)55:2<439::AID-BIT21>3.0.CO;2-A pmid: 18636502
[28]   Simpson N H, Singh R P, Perani A , et al. In hybridoma cultures, deprivation of any single amino acid leads to apoptotic death, which is suppressed by the expression of the bcl-2 gene. Biotechnol Bioeng, 1998,59(1):90-98.
doi: 10.1002/(ISSN)1097-0290
[1] . Preparation of monoclonal antibody by use of SP2/0 cell from live tumor[J]. China Biotechnology, 2008, 28(11): 63-66.