Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (4): 24-29    DOI: 10.13523/j.cb.20180404
    
The CiNAC1 from Caragana intermedia Promotes Transgenic Arabidopsis Leaf Senescence
Wen-ran YUE,Jun-yan YUE,Xiu-juan ZHANG,Qi YANG,Xiao-dong HAN,Rui-gang WANG,Guo-jing LI()
College of Life Sciences, Inner Mongolia Agricultural University, Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Hohhot 010018, China
Download: HTML   PDF(1109KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

NAC transcription factors are one of the largest plant-specific transcription factor families, and play important roles in plant growth and development, such as biotic and abiotic stress response, hormone signaling pathway, plant secondary growth, cell division and plant senescence. The CiNAC1 transgenic Arabidopsis thaliana homozygous lines was compared with wild type for further functional analyzes. The results showed that CiNAC1 overexpression lines promoted leaf senescence after ethylene treatment,furthermore, the chlorophyll contents of leaves were remarkably lower in transgenic lines than in wild-type, and ion leakage increased in transgenic lines. Quantitative real time PCR analysis showed that the expression level of chlorophyll catabolic genes, SGR1, SGR2 and PPH as well as senescence related genes, such as SAG13, SAG29, ORE1, SINA1,VNI2 and EIN3, a key transcription factor in ethylene signaling, was significantly higher in transgenic lines than in wild-type under ethylene treayment. Taken together, these results indicate that CiNAC1 play a role in ethylene induced leaf senescence in A. thaliana.



Key wordsNAC transcription factors      CiNAC1      Ethylene      Leaf senescence     
Received: 26 October 2017      Published: 08 May 2018
ZTFLH:  Q786  
Cite this article:

Wen-ran YUE,Jun-yan YUE,Xiu-juan ZHANG,Qi YANG,Xiao-dong HAN,Rui-gang WANG,Guo-jing LI. The CiNAC1 from Caragana intermedia Promotes Transgenic Arabidopsis Leaf Senescence. China Biotechnology, 2018, 38(4): 24-29.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180404     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I4/24

Fig.1 A working model of the EIN3-ORE1-CCGs in regulation of ethylene-mediated chl degradation
Fig.2 The expression of CiNAC1 under ethylene treatment by qRT-PCR
Fig.3 The senescence phenotypes of WT (wild type) and transgenic CiNAC1 Arabidopsis plant
Fig.4 Ethylene induced leaf senescence of 4-weeks-old WT and transgenic CiNAC1 Arabidopsis plants
Fig.5 Chlorophyll contents and membrane ion leakage of WT and transgenic CiNAC1 Arabidopsis plants
Fig.6 Expression of leaf senescence related genes and chlorophyll catabolic genes in transgenic CiNAC1 Arabidopsis plants
[1]   Bleecker A B, Kende H . Ethylene: a gaseous signal molecule in plants. Annual Review of Cell & Developmental Biology, 2000,16(1):1-18.
doi: 10.1146/annurev.cellbio.16.1.1 pmid: 11031228
[2]   张存立, 郭红卫 . 乙烯信号转导通路研究. 自然杂志, 2012,34(4):219-228.
[2]   Zhang C L, Guo H W . Study of ethylene signal transduction pathway. Chinese Journal of Nature, 2012,34(4):219-228.
[3]   陈娜, 蒋晶, 曹必好 , 等. 植物NAC转录因子功能研究新进展. 分子植物育种, 2015,13(6):1407-1414.
doi: 10.13271/j.mpb.013.001407
[3]   Chen N, Jiang J, Cao B H , et al. The Latset progress on plant NAC transcription factors function. Molecular Plant Breeding, 2015,13(6):1407-1414.
doi: 10.13271/j.mpb.013.001407
[4]   彭辉, 于兴旺, 成慧颖 , 等. 植物NAC转录因子家族研究概况. 植物学报, 2010,45(2):236-248.
doi: 10.3969/j.issn.1674-3466.2010.02.014
[4]   Peng H, Yu X W, Cheng H Y , et al. A survey of functional studies of the plant-specific NAC transcription factor family. Chinese Bulletin of Botany, 2010,45(2):236-248.
doi: 10.3969/j.issn.1674-3466.2010.02.014
[5]   Aida M, Ishida T, Fukaki H , et al. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell, 1997,9(6):841-857.
doi: 10.1105/tpc.9.6.841
[6]   Souer E, Van H A, Kloos D , et al. The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell, 1996,85(2):159.
doi: 10.1016/S0092-8674(00)81093-4 pmid: 8612269
[7]   Nuruzzaman M, Manimekalai R, Sharoni A M , et al. Genome-wide analysis of NAC transcription factor family in rice. Gene, 2010,465(1-2):30-44.
doi: 10.1016/j.gene.2010.06.008 pmid: 20600702
[8]   Le D T, Nishiyama R, Watanabe Y , et al. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res, 2011,18(4):263.
doi: 10.1093/dnares/dsr015 pmid: 21685489
[9]   Hu R B, Qi G, Kong Y Z , et al. Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa. BMC Plant Biol, 2010,10(1):145.
doi: 10.1186/1471-2229-10-145 pmid: 20630103
[10]   Rushton P J, Bokowiec M T, Han S , et al. Tobacco transcription factors: novel insights into transcriptional regulation in the Solanaceae. Plant Physiol, 2008,147(1):280-295.
doi: 10.1104/pp.107.114041
[11]   Buchananwollaston V, Page T, Harrison E , et al. Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant Journal, 2005,42(4):567-585.
doi: 10.1111/tpj.2005.42.issue-4
[12]   Guo Y, Cai Z, Gan S . Transcriptome of Arabidopsis leaf senescence. Plant Cell & Environment, 2004,27(5):521-549.
doi: 10.1111/j.1365-3040.2003.01158.x
[13]   Guo Y, Gan S . AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant Journal for Cell & Molecular Biology, 2006,46(4):601-612.
doi: 10.1111/j.1365-313X.2006.02723.x pmid: 16640597
[14]   Jin H K, Woo H R, Kim J , et al. Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science, 2009,323(5917):1053-1057.
doi: 10.1126/science.1166386 pmid: 19229035
[15]   Balazadeh S, Siddiqui H, Allu A D , et al. A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. Plant Journal, 2010,62(2):250.
doi: 10.1111/j.1365-313X.2010.04151.x pmid: 20113437
[16]   Li Z, Peng J, Wen X , et al. ETHYLENE-INSENSITIVE3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. Plant Cell, 2013,25(9):3311.
doi: 10.1105/tpc.113.113340 pmid: 24064769
[17]   Qiu K, Li Z, Yang Z , et al. EIN3 and ORE1 accelerate degreening during ethylene-mediated leaf senescence by directly activating chlorophyll catabolic genes in Arabidopsis. PLoS Genet, 2015,11(7):e1005399.
doi: 10.1371/journal.pgen.1005399 pmid: 4517869
[18]   Kim H J, Hong S H, You W K , et al. Gene regulatory cascade of senescence-associated NAC transcription factors activated by ETHYLENE-INSENSITIVE2-mediated leaf senescence signalling in Arabidopsis. J Exp Bot, 2014,65(14):4023-4036.
doi: 10.1093/jxb/eru112 pmid: 24659488
[19]   岳俊燕, 岳文冉, 杨杞 , 等. 中间锦鸡儿转录因子基因CiNAC1的克隆及功能分析. 西北植物学报, 2016,36(7):1285-1293.
[19]   Yue J Y, Yue W R, Yang Q , et al. Cloning and function analysis of CiNAC1 from Caragana intermedia. Acta Botanica Boreal-Occidentalia. Sinica, 2016,36(7):1285-1293.
[20]   Zhang H, Zhou C . Signal transduction in leaf senescence. Plant Mol Biol, 2013,82(6):539-545.
doi: 10.1007/s11103-012-9980-4 pmid: 23096425
[21]   Yanagisawa S, Yoo S D, Sheen J . Differential regulation of EIN3 stability by glucose and ethylene signalling in plants. Nature, 2003,425(6957):521-525.
doi: 10.1038/nature01984 pmid: 14523448
[1] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Marine Candida Lipase Using Novel Epoxy Cross-linker and Amino Carrier[J]. China Biotechnology, 2020, 40(5): 57-68.
[2] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,SUN Ai-jun,HU Yun-feng. Immobilization of Lipase Through Cross-linking of Polyethylene Glycol Diglycidyl Ether with Amino Carrier LX-1000EA[J]. China Biotechnology, 2020, 40(1-2): 124-132.
[3] Shan XU,Ren-qiang LI,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng Hu. Ethylene Glycol Diglycidyl Ether Cross-linked with Sodium Alginate- carboxymethyl Cellulose to Immobilize Lipase[J]. China Biotechnology, 2017, 37(12): 77-83.
[4] WANG Hong chao, ZHANG Chen, CHEN Dian ning, QIAO Ju yuan, CHEN Hai qin, GU Zhen nan, ZHANG Hao, CHEN Wei, CHEN Yong quan. Cloning, Expression and Function Analysis of Methylenetetrahydrofolate Dehydrogenase from Mortierella alpina[J]. China Biotechnology, 2016, 36(11): 23-29.
[5] LI Xing, YAO Wen-bing, XU Chen. Quality Control for PEGylated Recombinant Protein[J]. China Biotechnology, 2015, 35(12): 109-114.
[6] LI Zhi-Hua- Hu-Man-Cang- Yan-Ling-Mei- Diao-Yu-Jiao- Yang-Xu- Bang-Zheng-Hua- Xu-Wei-Meng- Li-Jian-Feng. Site-specific PEGylation of engineered cysteine analogues of recombinant human interleukin-11[J]. China Biotechnology, 2009, 29(06): 20-24.
[7] YANG Xia- Liu-Fang- Meng-Liang-Yu- Zhang-Chi-Zhou. Ethylene glycol and 1,2-propanediol enhanced polymerase chain reaction for amplification of high GC content human DNA[J]. China Biotechnology, 2009, 29(03): 69-73.
[8] . Adsorption performance in binding of Methylene Blue in aqueous solution by orange peel[J]. China Biotechnology, 2007, 27(5): 85-89.