Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (3): 62-69    DOI: 10.13523/j.cb.20180308
Orginal Article     
Increasing the Expression Level of Soluble Tumor Necrosis Factor Type I Based on Optimization of Secondary Structure of mRNA 5' Terminal TIR
Jiao-rong QIN,Zhao ZHAO,Xin-mei LUO,Chun-yang LI()
Chengdu Institute of Biological Products Co. Ltd, Chengdu 610023,China
Download: HTML   PDF(1937KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract   Objective:

To increase the expression level of soluble tumor necrosis factor type-I receptor(sTNFαRI)in E.coli BL21(DE3)by optimizing the secondary structure of PET11b-sTNFaRI translation initiation region(TIR).

Methods:

The free energy and nucleotide position entroy of the secondary structure of the translational initiation region was analyzed as the first step, and the primers were designed to mutate the codons of TIR of the PET11b-sTNFαRI in order to exposure of ribosome binding site and start codon to the outside of hairpin structure, in addition to mutating the pET11b ribosome binding site from GAAGGAGA to GAAGAA in order to facilitate assembly of the translational complex and initiation of translation. The optimized sequence of 5' terminal TIR was cloned into PET11b vector and transformed into E.coli BL21(DE3). The positive transformants were induced by IPTG and analyzed by SDS-PAGE and Western blot.

Results:

SDS-PAGE and Western blot analysis showed that the expression of Recombinant sTNFαRI was increased by 50%~60%, after optimizing the secondary structure of 5' terminal TIR of PET11b-sTNFαRI.

Conclusion:

The optimization of the secondary structure of the translation initiation region(TIR)mRNA of recombinant vector can effectively increase the expression level of the target protein, which is of great value for further industrialized production.



Key wordssTNFαRI      mRNA secondary structure      Translation initiation region      Free energy     
Received: 07 December 2017      Published: 04 April 2018
ZTFLH:  Q819  
Cite this article:

Jiao-rong QIN, Zhao ZHAO, Xin-mei LUO, Chun-yang LI. Increasing the Expression Level of Soluble Tumor Necrosis Factor Type I Based on Optimization of Secondary Structure of mRNA 5' Terminal TIR. China Biotechnology, 2018, 38(3): 62-69.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180308     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I3/62

名称 序列
rbs1 UUCCCCUCUAGACUAAUAGAUUAAGGAGGUAGUAAAUGGAUAGCGUGUGUCCGCAGGGUAAAUAUAUUCA
rbs2 AUAGGAAGCCCUAUUAAUAGUUAAGGAGGUAGUAGAUGGAUAGCGUGUGUCCGCAGGGUAAAUAUAUUCA
rbs3 UAAGGGAGAUUCAAAAUAGCAUAAGGAGGUAAUCGAUGGAUAGCGUGUGUCCGCAGGGUAAAUAUAUUCA
rbs4 CCCCUCUAGAGUCAAAUAGAUUAAGGAGGUAUAAAAUGGAUAGCGUGUGUCCGCAGGGUAAAUAUAUUCA
Ori-sTNFαRI AUAAUUUUGUUUAACUUUAAGAAGGAGAUAUACAUAUGGAUAGCGUGUGUCCGCAGGGUAAAUAUAUUCA
Table 1 Comparision of sTNFα 5'TIR sequence before and after mutation
Fig.1 Prediction of 5'TIR secondary structure and total free energy of sTNFαRI
(a)Rbs1 (b)Rbs2 (c)Rbs3 (d)Rbs4 (e)Ori-sTNFαRI (f)Probability
Fig.2 Prediction of relative free energy and position entroy
名称 序列
Rbs1 GCAACGTCTAGACTAATAGATTAAGGAGGTAGTAAATGGATAGCGT
Rbs2 GCAACGTCTAGAAACTTTAAGGGAGATTCAAAATAGCATAAGGAGGTAATCGATGGATAGCGT
Rbs3 GCAACGTCTAGATAGGAAGCCCTATTAATAGTTAAGGAGGTAGTAGATGGATAGCGT
Rbs4 GCAACGTCTAGAGTCAAATAGATTAAGGAGGTATAAAATGGATAGCGT
PP6 CGGAGG GGATCCTATTA ATTGAAGCACTGGAACAGG
Table 2 Primers of mutant PCR
Fig.3 Electrophoretogram of sTNFαRI gene amplified by PCR
M:DNA marker II;1:rbs1+TNFαRI;2:rbs2+TNFαRI;3:rbs3+TNFαRI;4:rbs4+TNFαRI;5: Negative control;6: Positive control
Fig.4 Identification of recombinant plasmid by double digestion
M1: DNA marker IV; 1-4:Recombinant plasmid pET11b-TNFa RI-rbs1/2/3/4 digest by XbaI+BamHI; M2: DNA marker II
Fig.5 Analysis expression level of sTNFαRI by (a)SDS-PAGE and Western blot(b)
M:Marker; 1-4:Expression level of sTNFαRI by pET11b-rbs1/2/3/4-sTNFα RI/BL21(DE3);5: pET11b-TNFa RI/BL21(DE3)(no reduce);6: Expression level of sTNFαRI by pET11b-TNFa RI/BL21(DE3)(before mutation)
Fig.6 Image Lab 4.0 software analysis
Line 2-5: Analysis of expression level of pET11b-rbs1/2/3/4-sTNFα RI/BL21(DE3)induced by IPTG;Line 6: pET11b-TNFa RI/BL21(DE3)(no reduce);Line 7: pET11b-TNFa RI/BL21(DE3)induced by IPTG (before mutation)
Fig.7 Comparision of expression level of sTNFαRI
[1]   Arend W P D, Dayer J M . Inhibition of the production and effects of interleukin-1 and tumor necrosis factor alpha in rheumatoid arthritis. Arthritis Rheum, 1995,38(2):151-160.
doi: 10.1002/(ISSN)1529-0131
[2]   Alsalameh S, Winter K, Al-Ward R , et al. Distribution of TNF-alpha, TNF-R55 and TNF-R75 in the rheumatoid synovial membrane: TNF receptors are localized preferentially in the lining layer; TNF-alpha is distributed mainly in the vicinity of TNF receptors in the deeper layers. Scand J Immunol, 1999,49(5):278-285.
doi: 10.1046/j.1365-3083.1999.00458.x
[3]   de Oliveira D C, Hastreiter A A, Mello A S , et al. The effects of protein malnutrition on the TNF-RI and NF-κB expression via the TNF-αsignaling pathway. Cytokine, 2014,69(2):218-225.
doi: 10.1016/j.cyto.2014.06.004 pmid: 25005154
[4]   Moreland L W, Baumgartner S W, Schiff M H , et al. Treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor receptor (p75)-Fc fusion protein. N Engl J Med, 1997,337(3):141-148.
doi: 10.1056/NEJM199707173370301 pmid: 9219699
[5]   Berard R A, Laxer R M . Etanercept(Enbrel) in the treatment of Juvenile idiopathic arthritis. Expert Opin Biol Ther, 2013,13(11):1623-1630.
doi: 10.1517/14712598.2013.840580 pmid: 24070010
[6]   Belmellat N, Semerano L, Segueni N , et al. Tumor necrosis factor-alpha targeting can protect against arthritis with low sensitization to infection. Front Immuno, 2017,8(14):1533.
doi: 10.3389/fimmu.2017.01533 pmid: 5694445
[7]   Huang C J, Lin H, Yang X . Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. Journral of Inductrial Microbiology & Biothechnology, 2012,39(3):383.
doi: 10.1007/s10295-011-1082-9 pmid: 22252444
[8]   Alibolandi M, Mirzahoseini H , Abad M A K, et al. High level expression of human basic Wbroblast growth factor in Escherichia coli: evaluating the eVect of the GC content and rare codons within the Wrst 13 codons. Afr J Biotechnol, 2010,9(16):2456-2462.
[9]   Simmons L C, Yansura D G . Translational level is a critical factor for the secretion of heterologous proteins in Escherichia coli. Nat Biotechnol, 1996,14(5):629-634.
doi: 10.1038/nbt0596-629 pmid: 9630956
[10]   Vimberg V, Tats A, Remm M , Translation initiation region sequence preferences in Escherichia coli. BMC Mol Biol, 2007,8:100.
doi: 10.1186/1471-2199-8-100 pmid: 2176067
[11]   Behloul N, Wei W, Baha S , et al. Effects of mRNA secondary structure on the expression of HEV ORF2 proteins in Escherichia coli. Microb Cell Fact, 2017,16(1):200.
doi: 10.1186/s12934-017-0812-8 pmid: 5686824
[12]   Zhang H W, Yang Y C, Lu Z . From sequence to structure: RNA secondary structure prediction methods and the applications. Chinese Bulletin of Life Sciences, 2014,26(3):219-218.
[13]   Garcia-Martin J A, Clote P . RNA thermodynamic structural entropy. PLoS One, 2015,10(11):e037859.
[14]   Zhang W C, Xiao W H, Wei H M , et al. mRNA secondary structure at start AUG codon is a key limit factor for human protein expression in Escherchia coli. Biochemical and Biophysical Research Communications, 2006,349(1):69-78.
doi: 10.1016/j.bbrc.2006.07.209 pmid: 16930549
[15]   Keiler K C. Bacterial Regulatory RNA//Methods in Molecular Biology (Methods and Protocols). New York: Humana Press, 2012: 99-122.
[16]   Li X . The simulation analysis of secondary structure prediction optimization model. Computer Simulation, 2016,7(0):323-326.
[17]   Hamada M, Kiryu H, Sato K , et al. Prediction of RNA secondary structure using generalized centroid estimators. Bioinformatics, 2009,25(4):465-473.
doi: 10.1093/bioinformatics/btn601 pmid: 19095700
[18]   Mathews D H, Disney M D, Childs J L , et al. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. PNAS, 2004,101(19):7287-7292.
doi: 10.1073/pnas.0401799101 pmid: 15123812
[19]   Eren A M, Morrison H G, Lescault P J , et al. Minimum entropy decomposition: Unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences. The ISME Journal, 2015,9(4):968-979.
doi: 10.1038/ismej.2014.195 pmid: 25325381
[20]   Dotu I , Garcia-Martin J A, Slinger B L, et al. Complete RNA inverse folding: computational design of functional hammerhead ribozymes. Nucleic Acids Research, 2014,42(18):11752-11762.
doi: 10.1093/nar/gku740 pmid: 25209235
[21]   Zhang Y P, Wang P, Yan M D . An Entropy-Based Position Projection Algorithm for Motif Discovery. BioMed Research International, 2016, 1-11.doi: 10.1155/9127474.
doi: 10.1155/9127474 pmid: 27882329
[22]   Bao C H, Wu L Y, Wu H G , et al. Moxibustion inhibits apoptosis and tumor necrosis factor-alpha/tumor necrosis factor receptor 1 in the colonic epithelium of Crohn’s disease model rats. Digestive Diseases & Scences, 2012,57(9):2286-2295.
doi: 10.1007/s10620-012-2161-0 pmid: 22531889
[23]   Farshadpour F, Taherkhani R, Makvandi M , et al. Condon-optimized expression and purification of truncated ORF2 protein of Hepatitis E virus in Escherichia coli. Jundishapur J Microbiol, 2014,7(7):e11261.
doi: 10.5812/jjm.11261 pmid: 253687962
[24]   Molina-Garcia L, Ciralda R . Enabling stop codon read-through translation in bacteria as a probe for amyloid aggregation. Sci Rep, 2017,7(1):1908.
doi: 10.1038/s41598-017-02017-3 pmid: 5432518
[1] YANG Qi-qi, ZHANG Jun-wei, ZHU Jian, LIU Jian-ping, HUANG Qiang. DNA Polymerase Binding to the Primer/template Duplex Affects the Efficiency of PCR[J]. China Biotechnology, 2014, 34(5): 6-13.