Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (8): 73-79    DOI: 10.13523/j.cb.20160810
    
Optimization for High Production Fermentation of Lunasin from Recombinant Pichia pastoris
KANG Guo-kai, FENG Guo-dong, CAO Kun-lin, CHEN Zheng-jun, GE Xiang-yang
State Key Laboratory of Agricultural Microbiology Huazhong Agricultural University, Wuhan 430070, China
Download: HTML   PDF(801KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Lunasin is a 43 amino acid polypeptide originally isolated from soybean with bioactive properties such as antihypertensive, antioxidant activity, cancer prevention and therapy, anti-inflammation, hypocholesterolemic activity, anti obesity and immunomodulation. In order to achieve efficient production of Lunasin, the methanol fed methods (DO feedback fedding and index-constant speed feeding) and induction temperature of recombinant Pichia pastoris GS115 LN were investigated. Furthermore, the feeding strategies of mixed carbon sources during induction phase were investigated. The results show that the best feeding strategies and induced temperature were index-constant speed feeding, 24℃. Consequently,the highest expression of Lunasin was 3.27g/L by feeding 1% soy peptone and 0.02% aspartic acid,which was 1.27 times higher than the single methanol induction process.



Key wordsHigh density fermentation      Process optimization      Recombinant Pichia pastoris      Lunasin     
Received: 03 March 2016      Published: 25 August 2016
ZTFLH:  Q815  
Cite this article:

KANG Guo-kai, FENG Guo-dong, CAO Kun-lin, CHEN Zheng-jun, GE Xiang-yang. Optimization for High Production Fermentation of Lunasin from Recombinant Pichia pastoris. China Biotechnology, 2016, 36(8): 73-79.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20160810     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I8/73

[1] 盖文丽, 颜冬菁, 王伟, 等. 生物活性肽Lunasin的原核表达和分离纯化. 现代生物医学进展, 2011, 11(5):805-807. Ge W L,Yan D J,Wang W,et al. Pro-karyotic expression and the separation and purification of bioactive peptides Lunasin. Progress in Modern Biomedicine, 2011, 11(5):805-807.
[2] Liu J, Jia S H, Kirberger M, et al. Lunasin as a promising health-beneficial peptide. European Review for Medical and Phar-macological Sciences, 2013, 18(14):2070-2075.
[3] 干飞, 薛承斌, 陈正望. 多肽Lunasin的生物活性和药理作用研究进展. 中国药房, 2015, 26(28):3993-3995. Gan F,Xue C B,Chen Z W. Advances in biological and pharmacological effects of polypeptide Lunasin. China Pharmacy, 2015, 26(28):3993-3995.
[4] Kyle S, Aggeli A, Ingham E, et al. Production of self-assembling biomaterials for tissue engineering. Trends in Biotechnology, 2009, 27(7):423-433.
[5] Kyle S, James K A, McPherson M J. Recombinant production of the therapeutic peptide Lunasin. Microbial Cell Factories, 2012, 11(28):1-8.
[6] Celik E, Çalik P, Oliver S G. Fed-batch methanol feeding strategy for recombinant protein production by Pichia pastoris in the presence of co-substrate sorbitol. Yeast, 2009, 26(9):473-484.
[7] 钟秦, 崔有信. 酵母生产培养基指数流加的研究. 南京理工大学学报(自然科学版), 1988, 4:8. Zhong Q,Cui Y X. The study of yeast production medium exponential feed-ing. Journal of Nanjing University of Science and Technology, 1988, 4:8.
[8] 任海涛, 袁景淇, 邓建慧, 等. 毕氏酵母流加发酵过程的比生长速率控制. 上海交通大学学报, 2004, 38(5):799-801. Ren H T,Yuan J Q,Deng J H, et al. The specific growth rate control of Pichia pastoris fed fermentation process control. Journal of Shanghai Jiaotong University,, 2004, 38(5):799-801.
[9] Jin H, Liu G, Dai K, et al. Improvement of porcine interferon-α production by re-combinant Pichia pastoris via induction at low methanol concentration and low temperature. Applied Biochemistry and Biotechnology, 2011, 165(2):559-571.
[10] Inan M, Meagher M M. Non-repressing carbon sources for alcohol oxidase (AOX1) promoter of Pichia pastoris. Journal of Bioscience and Bioengineering, 2001, 92(6):585-589.
[11] Sears I B, O'Connor J, Rossanese O W, et al. A versatile set of vectors for constitutive and regulated gene expression in Pichia pastoris. Yeast, 1998, 14(8):783-790.
[12] Jung Hee W, Yuan Yi L, Scott S, et al. In-creasing secretion of a bivalent anti-T-cell immunotoxin by Pichia pastoris. Applied & Environmental Microbiology, 2004, 70(70):3370-3376.
[13] Woo J H, Liu J S, Kang S H, et al. GMP production and characterization of the bivalent anti-human T-cell immunotoxin, A-dmDT390-bisFv(UCHT1) for phase I/Ⅱ clinical trials. Protein Expression & Purification, 2008, 58(1):1-11.
[14] Wang J, Nguyen V, Glen J, et al. Improved yield of recombinant merozoite surface protein 3(MSP3). Biotechnology & Bioengineering, 2005, 90(7):838-847.
[15] Zhao H L, Xue C, Wang Y, et al. Increasing the cell viability and heterologous protein expression of Pichia pastoris mutant deficient in PMR1 gene by culture condition optimization. Applied Microbiology & Biotechnology, 2008, 81(2):235-241.
[16] Khatri N K, Frank H. Impact of methanol concentration on secreted protein produc-tion in oxygen-limited cultures of recom-binant Pichia pastoris. Biotechnology & Bioengineering, 2006, 93(5):871-879.
[17] 周祥山, 范位民, 张元兴. 不同甲醇流加策略对重组毕赤酵母高密度发酵生产水蛭素的影响. 生物工程学报,2002, 18(3):348-351. Zhou X S, Fan W M, Zhang Y X. Effects of different methanol feeding strategy on hirudin production in high-density fer-mentation by recombinant Pichia pastoris. Chin J Biotech, 2002, 18(3):348-351.
[18] Lee J, Sang Y L, Park S, et al. Control of fed-batch fermentations. Biotechnology Advances, 1999, 17(1):29-48.
[19] Ohashi R, Mochizuki E, Suzuki T. A mini-scale mass production and separation system for secretory heterologous proteins by perfusion culture of recombinant Pichia pastoris using a shaken ceramic membrane flask. Journal of Bioscience & Bioengineering, 1999, 87(5):655-660.
[20] 吴丹, 储炬, 王永红,等. 甲醇浓度对毕赤酵母表达重组人复合α干扰素分离纯化得率的影响. 生物工程学报, 2011, 27(12):1789-1796. Wu D,Chu J, Wang Y H, et al. Influence of methanol concentration on purification recovery of consensus interferon-α produced by Pichia pastoris. Chin J Biotech, 2011, 27(12):1789-1796.
[21] Li J, Tang C, Shi H, et al. Cloning and optimized expression of a neutral endoglucanase gene (ncel5A) from Volvariella volvacea WX32 in Pichia pastoris. Journal of Bioscience & Bioen-gineering, 2011, 111(5):537-540.
[22] Dragosits M, Frascotti G, Bernardgranger L, et al. Influence of growth temperature on the production of antibody Fab frag-ments in different microbes:A host comparative analysis. Biotechnology Progress, 2012, 28(4):1114-1114.
[23] Batra G, Gurramkonda C, Nemani S K, et al. Optimization of conditions for secretion of Dengue virus type 2 envelope domain Ⅲ using Pichia pastoris. Journal of Bioscience & Bioengineering, 2010, 110(110):408-414.
[24] Gao M, Dong S, Yu R, et al. Improvement of ATP regeneration efficiency and opera-tion stability in porcine interferon-α pro-duction by Pichia pastoris under lower induction temperature. Korean Journal of Chemical Engineering, 2011, 28(6):1412-1419.
[25] Daly R, Hearn M T. Expression of het-erologous proteins in Pichia pastoris:a useful experimental tool in protein engi-neering and production. Journal of Mo-lecular Recognition, 2005, 18(2):119-138.
[26] Li Z, Xiong F, Lin Q, et al. Low-temperature increases the yield of biologically active herring antifreeze protein in Pichia pastoris. Protein Expression and Purification, 2001, 21(3):438-445.
[27] Jia D, Liu L, Wang H, et al. Overproduc-tion of a truncated poly (vinyl alcohol) dehydrogenase in recombinant Pichia pastoris by low-temperature induction strategy and related mechanism analysis. Bioprocess and Biosystems Engineering, 2013, 36(8):1095-1103.
[28] Sears I B, O'Connor J, Rossanese O W, et al. A versatile set of vectors for constitutive and regulated gene expression in Pichia pastoris. Yeast, 1998, 14(8):783-790.
[29] Walker G M. Yeast Physiology and Bio-technology. Hoboken,New Jersey:John Wiley & Sons, 1998.
[30] Eskitoros M S, Çalik P. Co-substrate mannitol feeding strategy design in semi-batch production of recombinant human erythropoietin production by Pichia pastoris. Journal of Chemical Technology and Biotechnology, 2014, 89(5):644-651.
[31] Ramón R, Ferrer P, Valero F. Sorbitol co-feeding reduces metabolic burden caused by the overexpression of a Rhizopus oryzae lipase in Pichia pastoris. Journal of Biotechnology, 2007, 130(1):39-46.
[32] Jahie M,Gustavsson M,Jansen A K,et al.Anabsis and control of proteolysis of a fusion protein in Pichia pastoris fed-batchprocesses.Bioteehnol,2003,102(1):45-53.
[33] He X, Liu N, Li W, et al. Inducible and constitutive expression of a novel thermostable alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5 in Pichia pastoris and characterization of the re-combinant enzyme. Enzyme and Microbial Technology, 2008, 43(1):13-18.

[1] Yan HUANG,Yi-rong SUN,Jing WU,Ling-qia SU. Optimization of High Density Fermentation of Recombinant Humicola insolens Cutinase[J]. China Biotechnology, 2019, 39(1): 63-70.
[2] YAO Ren-hui, DONG Zhuo, LI Hui. Biotransformation of Androst-4-en-3,17-dione by Gibberella intermedia C2[J]. China Biotechnology, 2017, 37(3): 73-77.
[3] LIU Ai-jun, SHI Shou-kun, LI Lan, WANG Ping, WANG Wei, JIA Jun-qiao, WANG Ze-jian, LI Hai-dong, ZHUANG Ying-ping, ZHANG Si-liang. Studies on the Measurement of Viable Biomass in the Optimization of Rifamycins SV Fermentation Process[J]. China Biotechnology, 2014, 34(10): 73-78.
[4] DENG Yong-Kang-1, TUN Min-Lu-2, LIU Cheng-Bang-1, DU Lin-Fang-1, WU Li-Li-1, LI Man-1, MENG Yan-Fa-1. Expression of recombinant uricase in E.coli JM109(DE3)Induced by lactose[J]. China Biotechnology, 2009, 29(07): 74-79.
[5] LIN Dun-Han. High density fermentation control of Pichia pastoris[J]. China Biotechnology, 2009, 29(05): 120-125.