Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (6): 81-86    DOI: 10.13523/j.cb.20160611
    
Application of a Transformation in Rhodotorula mucilaginosa Genetic Engineering
SUN Wen-yi1,2,4, ZHANG Su-fang2, LIN Xin-ping3, LUAN Yu-shi1
1. School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China;
2. Dalian Institute of Chemical Physics, CAS, Dalian 116023, China;
3. School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China;
4. School of Life Sciences, Jilin Normal University, Siping 136000, China
Download: HTML   PDF(787KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Rhodotorula mucilaginosa is an oleaginous ocean yeast that of great interest for both lipid and carotenoids production. However, rationally engineering of this cell factory is impeded due to the absence of efficient and reliable genetic tools. Agrobacterium-mediated transformation (ATMT) was successfully developed for R. mucilaginosa. First, the promoter of glyceraldehyde-3-phosphate dehydrogenase (GPD) was identified by referring to the completely annotated genome information of Rhodosporidium toruloides. Then, the codon optimized hygromycin (hyg) gene under GPD was used as both selection marker and functional gene through ATMT transformation in R. mucilaginosa, the integration was confirmed by phenotype, genotype and Western blot analysis in protein level. The results provided a practical method for functional integration and expression of hyg genes in R. mucilaginosa, which would facilitate the development of genetic tools.



Key wordsRhodotorula mucilaginosa      Hygromycin      Agrobacterium-mediated transformation     
Received: 24 December 2015      Published: 16 March 2016
ZTFLH:  Q789  
Cite this article:

SUN Wen-yi, ZHANG Su-fang, LIN Xin-ping, LUAN Yu-shi. Application of a Transformation in Rhodotorula mucilaginosa Genetic Engineering. China Biotechnology, 2016, 36(6): 81-86.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20160611     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I6/81

[1] Raggi P, Lopez P, Diaz A, et al. Debaryomyces hansenii and Rhodotorula mucilaginosa comprised the yeast core gut microbiota of wild and reared carnivorous salmonids, croaker and yellowtail. Environ Microbiol, 2014, 16(9): 2791-2803.
[2] Li M, Liu G L, Chi Z, et al. Single cell oil production from hydrolysate of cassava starch by marine-derived yeast Rhodotorula mucilaginosa TJY15a. Biomass Bioenerg, 2010, 34(1): 101-107.
[3] Aksu Z, Eren A T. Carotenoids production by the yeast Rhodotorula mucilaginosa: Use of agricultural wastes as a carbon source. Process Biochem, 2005, 40(9): 2985-2991.
[4] 赵宗保. 加快微生物油脂研究为生物柴油产业提供廉价原料. 中国生物工程杂志, 2005, 25(2): 8-11. Zhao Z B. Toward cheaper microbial oil for biodiesel oil. China Biotechnology, 2005, 25(2): 8-11.
[5] 陶俊, 张上隆, 徐昌杰,等. 类胡萝卜素合成的相关基因及其基因工程. 生物工程学报, 2002, 18(3): 276-281. Tao J, Zhang S L, Xu C J, et al. Gene and gene engineering of carotenoid biosynthesis. Chinese Journal of Biotechnology, 2002, 18(3): 276-281.
[6] Steen E J, Kang Y S, Bokinsky G, et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature, 2010, 463 (7280): 559-562.
[7] 刘雅婷,刘宏娟,王艳萍. 常压室温等离子体诱变粘红酵母筛选高产油脂菌株及发酵条件优化. 中国油脂, 2015, 40(1): 83-87. Liu Y T, Liu H J, Wang Y P. Screening of high lipid production strain from Rhodotorula glutinis mutagenized by atmospheric and room temperature plasma and optimization of fermentation condition. China Oils and Fats, 2015, 40(1): 83-87.
[8] Karube I, Tamiya E, Matsuoka H. Transformation of Saccharomy cescerevisiae spheroplasts by high electric pulse. FEBS Lett, 1985, 182(1): 90-94.
[9] Hashimoto H, Morikawa H, Yamada Y, et al. A novel method for transformation of intact yeast-cells by electroinjection of plasmid DNA. Appl Microbiol Bio, 1985, 21(5): 336-339.
[10] Meyer V. Genetic engineering of filamentous fungi-progress, obstacles and future trends. Biotechnol Adv, 2008, 26(2): 177-185.
[11] Gietz R D, Woods R A. Genetic transformation of yeast. Biotechniques, 2001, 30(4): 816-818.
[12] Kuck U, Hoff B. New tools for the genetic manipulation of filamentous fungi. Appl Microbiol Biotechnol, 2010, 86(1): 51-62.
[13] Schiestl R H, Petes T D. Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A, 1991, 88(17): 7585-7589.
[14] Deligios M, Fraumene C, Abbondio M, et al. Draft genome sequence of Rhodotorula mucilaginosa, an emergent opportunistic pathogen. Genome Announc, 2015, 3(2): e00201-15.
[15] Meyer V. Genetic engineering of filamentous fungi-progress, obstacles and future trends. Biotechnol Adv, 2008, 26(2): 177-185.
[16] Michielse C B, Hooykaas P J, van den Hondel C, et al. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Current Genetics, 2005, 48(1): 1-17.
[17] Lin X P, Wang Y N, Zhang S F, et al. Functional integration of multiple genes into the genome of the oleaginous yeast Rhodosporidium toruloides. FEMS Yeast Res, 2014, 14(4): 547-555.
[18] Lazo G R, Stein P A, Ludwig R A. A DNA transformation-competent arabidopsis genomic library in Agrobacterium. Nat Biotechnol (NY), 1991, 9(10): 963-967.
[19] Ji L H, Jiang Z D, Liu Y B, et al. A simplified and efficient method for transformation and gene tagging of Ustilago maydis using frozen cells. Fungal Genet Biol, 2010, 47(4): 279-287.
[20] van den Ent, J Löwe. Rf cloning: A restriction-free method for inserting target genes into plasmids. J Biochem Bioph Meth, 2006, 67(1): 67-74.
[21] Liu Y B, Koh C M J, Sun L H, et al. Characterization of glyceraldehyde-3-phosphate dehydrogenase gene rtgpd1 and development of genetic transformation method by dominant selection in oleaginous yeast Rhodosporidium toruloides. Appl Microbiol Biotechnol, 2013, 97(2): 719-729.
[22] Bundock P, den Dulk-RasA, Beijersbergen A, et al. Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J, 1995, 14(13): 3206-3214.
[23] Lin X P, Yang F, Zhou Y J, et al. Highly-efficient colony PCR method for red yeasts and its application to identify mutations within two leucine auxotroph mutants. Yeast, 2012, 29(11): 467-474.
[24] Zhu Z W, Zhang S F, Liu H W, et al. A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nat Commun, 2012, 3:1112.
[25] Wang Y N, Lin X P, Zhang S F, et al. Cloning and evaluation of different constitutive promoters in the oleaginous yeast Rhodosporidium toruloides.Yeast, 2015, DOI: 10.1002/yea.3145.

[1] SUN Dan, ZHANG Min, XIE Chang-rui, GUO Xiao-wei, XU He-han, GAO Hong-tao, LI Xiao-wei, SUN Tian-xu, LI Hai-yan. Establishment of Genetic Transformation System of Cordyceps militaris using PEG Mediated Method[J]. China Biotechnology, 2017, 37(4): 76-82.
[2] WANG Ting-ting, JI Jing, WANG Gang, GUAN Chun-feng, ZHANG Lie, JIN Chao. Study on Agrobacterium-mediated Transformation of psy Gene into Shoot Meristem of Maize[J]. China Biotechnology, 2012, 32(08): 36-40.
[3] KANG Hai-Qi, SHEN Guo-An. The Adaptability of Rice Callus to Different Media, the Sensitivity to Hygromycin and Utilization in Rice Genetic Transformation[J]. China Biotechnology, 2009, 29(10): 50-54.