Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2011, Vol. 31 Issue (8): 139-144    DOI:
    
Research Progress of "Omics" Technologies and Its Application in Construction of Engineering Strain of Saccharomyces cerevisiae
ZHANG Xiao-yang1, LI Yu-dong2, WU Xue-chang2
1. State Key Laboratory of Motor Vehicle Biofuel Technology,Tianguan Group Co.,Ltd,Nanyan 473000,China;
2. Institute of Microbiology,College of Life Science,Zhejiang University,Hangzhou 310058,China
Download: HTML   PDF(712KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The budding yeast,Saccharomyces cerevisiae,has been used as eukaryotic model organism in "ome" level research. "Omics" technologies were mainly composed of genomics,transcriptomics,proteomics and metabolomics. The recent advancements of "ome" level research in yeast were surveyed,then their application in strain improvement by genetic engineering was discussed,including the industrial yeast strains in bioethanol and winemaking processes.



Key wordsSaccharomyces cerevisiae      Omics technology      Strain improvement     
Received: 30 May 2011      Published: 25 August 2011
ZTFLH:  Q939.9  
Cite this article:

ZHANG Xiao-yang, LI Yu-dong, WU Xue-chang. Research Progress of "Omics" Technologies and Its Application in Construction of Engineering Strain of Saccharomyces cerevisiae. China Biotechnology, 2011, 31(8): 139-144.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2011/V31/I8/139


[1] Legras J L,Merdinoglu D,Cornuet J M,et al. Bread,beer and wine:Saccharomyces cerevisiae diversity reflects human history. Molecular Ecology,2007,16(10):2091-2102.

[2] Goffeau A,Barrell B G,Bussey H,et al. Life with 6000 genes. Science,1996,274(5287):546,563-547.

[3] 赵心清,白凤武,李寅. 系统生物学和合成生物学研究在生物燃料生产菌株改造中的应用. 生物工程学报,2010,26(7):880-887. Zhao X Q,Bai F W,Li Y. Chinese Journal of Bioechnolgy,2010,26(7):880-887.

[4] Strack L,Stahl U. "Omics" technologies and their input for the comprehension of metabolic systems particularly pertaining to yeast organisms. Progress in Botany,2011,72:105-122.

[5] 秦丽娜,江贤章,田宝玉,等. 代谢工程在酿酒酵母菌育种中的应用研究进展. 食品与发酵工业,2007,33(012):104-110. Qin L N,Jiang X Z,Tian B Y,et al. Food and Fermentation Industries,2007,33(012):104-110.

[6] Borneman A R,Chambers P J,Pretorius I S. Yeast systems biology:modelling the winemaker's art. Trends in Biotechnology,2007,25(8):349-355.

[7] Wei W,McCusker J H,Hyman R W,et al. Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM789. Proceedings of the National Academy of Sciences of the United States of America,2007,104(31):12825-12830.

[8] Liti G,Carter D M,Moses A M,et al. Population genomics of domestic and wild yeasts. Nature,2009,458(7236):337-341.

[9] Borneman A R,Forgan A H,Pretorius I S,et al. Comparative genome analysis of a Saccharomyces cerevisiae wine strain. FEMS Yeast Research,2008,8(7):1185-1195.

[10] Novo M,Bigey F,Beyne E,et al. Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Proceedings of the National Academy of Sciences of the United States of America,2009,106(38):16333-16338.

[11] Borneman A R,Desany B A,Riches D,et al. Whole-genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae. PLoS Genetics,2011,7(2):e1001287.

[12] Cliften P,Sudarsanam P,Desikan A,et al. Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science,2003,301(5629):71-76.

[13] Schacherer J,Shapiro J A,Ruderfer D M,et al. Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae. Nature,2009,458(7236):342-345.

[14] Klipp E,Nordlander B,Kruger R,et al. Integrative model of the response of yeast to osmotic shock. Nature Biotechnology,2005,23(8):975-982.

[15] DeRisi J L,Iyer V R,Brown P O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science,1997,278(5338):680-686.

[16] Alexandre H,Ansanay-Galeote V,Dequin S,et al. Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Letters,2001,498(1):98-103.

[17] Gasch A P,Spellman P T,Kao C M,et al. Genomic expression programs in the response of yeast cells to environmental changes. Molecular Biology of the Cell,2000,11(12):4241-4257.

[18] Marks V D,Ho Sui S J,Erasmus D,et al. Dynamics of the yeast transcriptome during wine fermentation reveals a novel fermentation stress response. FEMS Yeast Research,2008,8(1):35-52.

[19] Blieck L,Toye G,Dumortier F,et al. Isolation and characterization of brewer's yeast variants with improved fermentation performance under high-gravity conditions. Applied and Environmental Microbiology,2007,73(3):815-824.

[20] Wang Z,Gerstein M,Snyder M. RNA-Seq:a revolutionary tool for transcriptomics. Nature Reviews Genetics,2009,10(1):57-63.

[21] Nagalakshmi U,Wang Z,Waern K,et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science,2008,320(5881):1344-1349.

[22] Haynes P A,Yates J R. Proteome profiling-pitfalls and progress. Yeast,2000,17(2):81-87.

[23] Insenser M R,Hernaez M L,Nombela C,et al. Gel and gel-free proteomics to identify Saccharomyces cerevisiae cell surface proteins. Journal of Proteomics,2010,73(6):1183-1195.

[24] Helbig A O,de Groot M J,van Gestel R A,et al. A three-way proteomics strategy allows differential analysis of yeast mitochondrial membrane protein complexes under anaerobic and aerobic conditions. Proteomics,2009,9(20):4787-4798.

[25] Pham T K,Chong P K,Gan C S,et al. Proteomic analysis of Saccharomyces cerevisiae under high gravity fermentation conditions. Journal of Proteome Research,2006,5(12):3411-3419.

[26] Krogan N J,Cagney G,Yu H,et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature,2006,440(7084):637-643.

[27] Hesselberth J R,Miller J P,Golob A,et al. Comparative analysis of Saccharomyces cerevisiae WW domains and their interacting proteins. Genome Biology,2006,7(4):30.

[28] Costenoble R,Picotti P,Reiter L,et al. Comprehensive quantitative analysis of central carbon and amino-acid metabolism in Saccharomyces cerevisiae under multiple conditions by targeted proteomics. Molecular Systems Biology,2011,7:464.

[29] Nevoigt E. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews:MMBR,2008,72(3):379-412.

[30] Devantier R,Scheithauer B,Villas-Boas S G,et al. Metabolite profiling for analysis of yeast stress response during very high gravity ethanol fermentations. Biotechnology and Bioengineering,2005,90(6):703-714.

[31] Villas-Boas S G,Kesson M,Nielsen J. Biosynthesis of glyoxylate from glycine in Saccharomyces cerevisiae. FEMS Yeast Research,2005,5(8):703-709.

[32] O'Hagan S,Dunn W B,Brown M,et al. Closed-loop,multiobjective optimization of analytical instrumentation:gas chromatography/time-of-flight mass spectrometry of the metabolomes of human serum and of yeast fermentations. Analytical Chemistry,2005,77(1):290-303.

[33] Smedsgaard J,Nielsen J. Metabolite profiling of fungi and yeast:from phenotype to metabolome by MS and informatics. Journal of Experimental Botany,2005,56(410):273-286.

[34] Oliver S G,Winson M K,Kell D B,et al. Systematic functional analysis of the yeast genome. Trends in Biotechnology,1998,16(9):373-378.

[35] Rossignol T,Postaire O,Storai J,et al. Analysis of the genomic response of a wine yeast to rehydration and inoculation. Applied Microbiology and Biotechnology,2006,71(5):699-712.

[36] Ostergaard S,Olsson L,Nielsen J. Metabolic engineering of Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews:MMBR,2000,64(1):34-50.

[37] Howell K S,Cozzolino D,Bartowsky E J,et al. Metabolic profiling as a tool for revealing Saccharomyces interactions during wine fermentation. FEMS Yeast Research,2006,6(1):91-101.

[38] Argueso J L,Carazzolle M F,Mieczkowski P A,et al. Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Research,2009,19(12):2258-2270.

[39] Wu X C,Chi X Q,Wang P M,et al. The evolutionary rate variation among genes of HOG-signaling pathway in yeast genomes. Biology Direct 2010,5:46:2-10.

[40] Zheng D Q. Wu X C,Wang P M,et al. Drug resistance marker-aided genome shuffling to improve acetic acid tolerance in Saccharomyces cerevisiae. J Ind Microbiol Biotechnol, 2011,38:415-422.

[41] Zheng D Q,Wu X C,Tao X L,et al. Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance. Bioresource Technology,2011,102:3020-3027.

[42] Snyder M , Gallagher J E. Systems biology from a yeast omics perspective. FEBS Letters,2009,583:3895-3899.

[1] ZHANG Ye,WANG Ji-ping,SU Tian-ming,HE Tie-guang,WANG Jin,ZENG Xiang-yang. Research Progress on Degradation of Lignocellulosic Biomass by Screening Microorganisms[J]. China Biotechnology, 2020, 40(6): 100-105.
[2] MEI Xue-ang, CHEN Yan, WANG Rui-zhao, XIAO Wen-hai, WANG Ying, LI Xia, YUAN Ying-jin. Engineered Yeast Cell for Producing Zeaxanthin[J]. China Biotechnology, 2016, 36(8): 64-72.
[3] WANG Rui-zhao, PAN Cai-hui, WANG Ying, XIAO Wen-hai, YUAN Ying-jin. Design and Construction of highβ-carotene Producing Saccharomyces cerevisiae[J]. China Biotechnology, 2016, 36(7): 83-91.
[4] ZHANG Wen-qian, XIAO Wen-hai, ZHOU Xiao, WANG Ying. Effect of Post-squalene Genes on the Synthesis of 7-Dehydrocholesterol in the Artificial Saccharomyces cerevisiae[J]. China Biotechnology, 2016, 36(6): 39-50.
[5] LIANG Xin-quan, LI Ning, REN Qin, LIU Ji-dong. Progress in the Metabolic Engineering of Saccharomyces cerevisiae for L-lactic Acid Production[J]. China Biotechnology, 2016, 36(2): 109-114.
[6] LIU Bao-li, LIU Gao-gang, LIN Qiu-hui, LI Bing-zhi, YUAN Ying-jin. Construction of Recombinant Xylose-utilizing Saccharomyces cerevisiae by Three-plasmid Co-transformation Combinatorial Screening Method[J]. China Biotechnology, 2016, 36(12): 86-97.
[7] ZHONG Cheng, LIU Ling-pu, LI Qing-liang, YANG Pan-fei, HAO Jun-guang, JIA Shi-ru. Analyze the Mechanism of Flavor Compounds Formation Using Metabonomics Method During Industrial Beer Fermentation[J]. China Biotechnology, 2016, 36(12): 49-58.
[8] LIANG Xiang nan, ZHANG Kun, ZOU Shao lan, WANG Jian jun, MA Yuan yuan, HONG Jie fang. Construction and Preliminary Evaluation of Saccharomyces cerevisiae Strains Co-expressing Three Types of Cellulase Via Cocktail δ-integration[J]. China Biotechnology, 2016, 36(11): 54-62.
[9] ZHANG Xu, DING Jian, GAO Peng, GAO Min-jie, JIA Lu-qiang, TU Ting-yong, SHI Zhong-ping. Fed-batch Culture of Saccharomyces cerevisiae with Adaptive Control Based on Differential Evolution Algorithm[J]. China Biotechnology, 2016, 36(1): 68-75.
[10] SUN Huan, JIA HAI-yang, FENG XU-dong, LIU Yue-qin, LI Chun. Screening of Heat-resistant Device in Saccharomyces cerevisiae[J]. China Biotechnology, 2015, 35(3): 75-83.
[11] ZHANG Xu, WANG Jing-jing, LIU Jian-ping. The Optimization of Saccharomyces cerevisiae Expression System by Mutagenesis of Promoter and Host Strain[J]. China Biotechnology, 2015, 35(1): 61-66.
[12] LIU Yu-xue, ZHANG Yi-xin, WANG Lei, LIN Xin-ping, ZHU Zhi-wei, ZHAO Zong-bao. Formation of Equol from Dihydrodaidzein by Recombinant Saccharomyces cerevisiae[J]. China Biotechnology, 2014, 34(4): 41-45.
[13] LI Yun-cheng, TANG Yue-qin, KIDA Kenji. Application of OMICS Technology in Construction of Saccharomyces cerevisiae Strains for Ethanol Production[J]. China Biotechnology, 2014, 34(2): 118-128.
[14] ZHAO Xiu-juan, ZHENG Xiao-dong, XUE Tao-tao, CAI Lu. Comparison of ARS Element Forming Nucleosome on Saccharomyces cerevisiae YPH499 Ⅲ Chromosome in vitro[J]. China Biotechnology, 2014, 34(11): 34-41.
[15] LU Jian, JIAN Jia-xi, LIU Jian-ping, WANG Hong-hai. The Vaccination with Saccharomyces cerevisiae Recombined with Mycobacterium tuberculosis Antigens Induces Specific Immunoresponsesin Mice[J]. China Biotechnology, 2014, 34(11): 47-53.