Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2015, Vol. 35 Issue (7): 102-110    DOI: 10.13523/j.cb.20150714
    
Structure, Properties and Synthesis Reinforcement of Fengycins: Lipopeptide Biosurfactant
XIE Huan, YU Hui-min, SHEN Zhong-yao
Department of Chemical Engineering, Tsinghua University, Key Laborarory for Industrial Biocatalysis, Ministry of Education, Beijing 100084, China
Download: HTML   PDF(1301KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Lipopeptide biosurfactants are small compounds synthesized by various microorganisms as secondary metabolites. The common molecules of such biosurfactants contain both fatty acid chains as the hydrophobic portion and cyclic peptides as the hydrophilic moieties. Due to the amphipathic structures, lipopeptides present promising properties like surface activity and anti-microbial activities and therefore can be applied in chemical, agricultural, pharmaceutical and food industries. Lipopeptide biosurfactants produced by the most studied Bacillus are mainly divided into three families according to the structure of cyclic peptides: surfactin, fengycin and iturin. Surfactins presents outstanding surface activity by significantly reducing the surface tension of water while fengycins and iturins show strong anti-fungal antibiotic activity. Although less known as other lipopeptide biosurfactants, fengycins are well recognized as potential bio-fungicides based on current researches. In this review, the basic structure, synthesis mechanism and fungitoxic activity of fengycins were introduced. Moreover, strategies and current progress on biosynthesis reinforcement were also discussed for further studies.



Key wordsFengycin      Lipopeptide biosurfactant      Non-ribosomal peptide synthetase      Antimicrobial activity      Synthesis reinforcement     
Received: 22 January 2015      Published: 25 July 2015
ZTFLH:  Q5  
Cite this article:

XIE Huan, YU Hui-min, SHEN Zhong-yao. Structure, Properties and Synthesis Reinforcement of Fengycins: Lipopeptide Biosurfactant. China Biotechnology, 2015, 35(7): 102-110.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20150714     OR     https://manu60.magtech.com.cn/biotech/Y2015/V35/I7/102


[1] 方云, 夏咏梅. 生物表面活性剂. 北京: 中国轻工业出版社, 1992:1-160. Fang Y, Xia Y M. Biosurfactants. Beijing: China Light Industry Press, 1992:1-160.

[2] 杨福廷. 脂肽类生物表面活性剂研究进展. 精细化工, 2006, 23(2): 121-124. Yang F T. Progress in research of lipopeptide biosurfactants. Fine Chemicals, 2006, 23(2): 121-124.

[3] 吕应年, 杨世忠, 牟伯中. 脂肽的分离纯化与结构研究. 微生物学通报, 2005, 32(1): 67-73. Ying N L, Yang S Z, Mu B Z. Isolation and identification of a lipopeptide. Microbiology, 2005, 32(1):67-73.

[4] Kim S, Kim J Y, Kim S H, et al. Surfactin from Bacillus subtilis displays anti-proliferative effect via apoptosis induction, cell cycle arrest and survival signaling suppression. FEBS Letters, 2007, 581(5): 865-871.

[5] Hwang M H, Lim J H, Yun H I, et al. Surfactin C inhibits the lipopolysaccharide-induced transcription of interleukin-1β and inducible nitric oxide synthase and nitric oxide production in murine RAW 264.7 cells. Biotechnology Letters, 2005, 27(20): 1605-1608.

[6] Kikuchi T, Hasumi K. Enhancement of plasminogen activation by surfactin C: augmentation of fibrinolysis in vitro and in vivo. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 2002, 1596(2): 234-245.

[7] Peypoux F, Bonmatin J M, Wallach J. Recent trends in the biochemistry of surfactin. Applied Microbiology and Biotechnology, 1999, 51(5): 553-563.

[8] Lang S. Biological amphiphiles (microbial biosurfactants). Current Opinion in Colloid & Interface Science, 2002, 7(1): 12-20.

[9] 刘向阳, 杨世忠, 牟伯中.微生物脂肽的结构. 生物技术通报, 2005, 4: 18-26. Liu X Y, Yang S Z, Mou B Z.Molecular structures of microbial lipopeptides. Biotechnology Bulletin, 2005, 4: 18-26.

[10] Noah K S, Bruhn D F, Bala G A. Surfactin production from potato process effluent by Bacillus subtilis in a chemostat.Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals. New Jersey:Humana Press, 2005: 465-473.

[11] Sandrin C, Peypoux F, Michel G. Coproduction of surfactin and iturin A, lipopeptides with surfactant and antifungal properties, by Bacillus subtilis. Biotechnology and Applied Biochemistry, 1990, 12(4): 370-375.

[12] Vanittanakom N, Loeffler W, Koch U, et al. Fengycin-a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. The Journal of Antibiotics, 1986, 39(7): 888-901.

[13] Chen C L, Chang L K, Chang Y S, et al. Transposon mutagenesis and cloning of the genes encoding the enzymes of fengycin biosynthesis in Bacillus subtilis. Molecular and General Genetics MGG, 1995, 248(2): 121-125.

[14] Schneider J, Taraz K, Budzikiewicz H, et al. The structure of two fengycins from Bacillus subtilis S499. Zeitschrift fur Naturforschung C, 1999, 54(12): 859-866.

[15] Steller S, Vollenbroich D, Leenders F, et al. Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3. Chemistry & Biology, 1999, 6(1): 31-41.

[16] Wang J, Liu J, Wang X, et al. Application of electrospray ionization mass spectrometry in rapid typing of fengycin homologues produced by Bacillus subtilis. Letters in Applied Microbiology, 2004, 39(1): 98-102.

[17] Ongena M, Jacques P, Touré Y, et al. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Applied Microbiology and Biotechnology, 2005, 69(1): 29-38.

[18] Sang-Cheol L, Kim S H, Park I H, et al. Isolation, purification, and characterization of novel fengycin S from Bacillus amyloliquefaciens LSC04 degrading-crude oil. Biotechnology and Bioprocess Engineering, 2010, 15(2): 246-253.

[19] Nishikiori T, Naganawa H, Muraoka Y, et al. Plipastatins: new inhibitors of phospholipase A2, produced by Bacillus cereus BMG302-fF67. III. Structural elucidation of plipastatins. The Journal of Antibiotics, 1986, 39(6): 755-761.

[20] Tsuge K, Ano T, Shoda M. Isolation of a gene essential for biosynthesis of the lipopeptide antibiotics plipastatin B1 and surfactin in Bacillus subtilis YB8. Archives of Microbiology, 1996, 165(4): 243-251.

[21] Roongsawang N, Thaniyavarn J, Thaniyavarn S, et al. Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides: bacillomycin L, plipastatin, and surfactin. Extremophiles, 2002, 6(6): 499-506.

[22] Lin G H, Chen C L, Tschen J S M, et al. Molecular cloning and characterization of fengycin synthetase gene fenB from Bacillus subtilis. Journal of Bacteriology, 1998, 180(5): 1338-1341.

[23] Lin T P, Chen C L, Chang L K, et al. Functional and transcriptional analyses of a fengycin synthetase gene, fenC, from Bacillus subtilis. Journal of Bacteriology, 1999, 181(16): 5060-5067.

[24] Shu H Y, Lin G H, Wu Y C, et al. Amino acids activated by Fengycin synthetase FenE. Biochemical and Biophysical Research Communications, 2002, 292(4): 789-793.

[25] Ongena M, Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology, 2008, 16(3): 115-125.

[26] Roongsawang N, Washio K, Morikawa M. Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. International Journal of Molecular Sciences, 2010, 12(1): 141-172.

[27] Tognoni A, Franchi E, Magistrelli C, et al. A putative new peptide synthase operon in Bacillus subtilis: partial characterization. Microbiology,1995, 141(3): 645-648.

[28] Tosato V, Albertini A M, Zotti M, et al. Sequence completion, identification and definition of the fengycin operon in Bacillus subtilis 168. Microbiology,1997, 143(11): 3443-3450.

[29] Tsuge K, Ano T, Hirai M, et al. The genes degQ, pps, and lpa-8 (sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production. Antimicrobial Agents and Chemotherapy, 1999, 43(9): 2183-2192.

[30] 董伟欣, 李社增, 鹿秀云, 等. 枯草芽胞杆菌 NCD-2 中调控因子 PhoP对 fengycin 合成的调控作用. 植物病理学报, 2014, 44(2): 180-187. Dong W X, Li D Z, Lu X Y, et al. Regulation of fengycin biosynthase by regulator PhoP in the Bacillus subtilis strain NCD-2. Acta Hytophthologica Sinica, 2014, 44(2): 180-187.

[31] Romero D, de Vicente A, Rakotoaly R H, et al. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Molecular Plant-Microbe Interactions, 2007, 20(4): 430-440.

[32] Dong W, Li B, Li S, et al. The fengycin lipopeptides are major components in the Bacillus subtilis strain NCD-2 against the growth of Botrytis cinerea. Acta Phytopathologica Sinica, 2013, 43(4): 401-410.

[33] Tao Y, Bie X, Lv F, et al. Antifungal activity and mechanism of fengycin in the presence and absence of commercial surfactin against Rhizopus stolonifer. The Journal of Microbiology, 2011, 49(1): 146-150.

[34] Tang Q, Zhou X, Lu Z, et al. Effects of fengycin from Bacillus subtilis fmbJ on respiratory chain and nutrients utilization of Rhizopus stolonifer. Food Science, 2011, 32(11): 248-254.

[35] Ramarathnam R, Bo S, Chen Y, et al. Molecular and biochemical detection of fengycin and bacillomycin D-producing Bacillus spp., antagonistic to fungal pathogens of canola and wheat. Canadian Journal of Microbiology, 2007, 53(7): 901-911.

[36] Yánez-Mendizábal V, Zeriouh H, Viáas I, et al. Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides. European Journal of Plant Pathology, 2012, 132(4): 609-619.

[37] Deleu M, Paquot M, Nylander T. Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes. Biophysical Journal, 2008, 94(7): 2667-2679.

[38] Deleu M, Paquot M, Nylander T. Fengycin interaction with lipid monolayers at the air-aqueous interface implications for the effect of fengycin on biological membranes. Journal of Colloid and Interface Science, 2005, 283(2): 358-365.

[39] Eeman M, Deleu M, Paquot M, et al. Nanoscale properties of mixed fengycin/ceramide monolayers explored using atomic force microscopy. Langmuir, 2005, 21(6): 2505-2511.

[40] 唐群勇, 周小虹, 陆兆新, 等. Bacillus subtilis fmbJ 产 Fengycin 对Rhizopus stolonifer呼吸链及营养物质利用的影响. 食品科学, 2011, 32(11): 248-254. Tang Y Q, Zhou X H, Lu Z X, et al. Effects of fengycin from Bacillus subtilis fmbJ on respiratory chain and nutrients utilization of Rhizopus stolonifer. Food Science, 2011, 32(11):248-254.

[41] Ongena M, Jourdan E, Adam A, et al. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environmental microbiology, 2007, 9(4): 1084-1090.

[42] Yeh M S, Wei Y H, Chang J S. Bioreactor design for enhanced carrier-assisted surfactin production with Bacillus subtilis. Process Biochemistry, 2006, 41(8): 1799-1805.

[43] Khan A W, Zohora U S, Rahman M S, et al. Production of iturin A through glass column reactor (GCR) from soybean curd residue (okara) by Bacillus subtilis RB14-CS under solid state fermentation (SSF). Advances in Bioscience and Biotechnology, 2012, 3(2): 143-148.

[44] Coutte F, Lecouturier D, Yahia S A, et al. Production of surfactin and fengycin by Bacillus subtilis in a bubbleless membrane bioreactor. Applied Microbiology and Biotechnology, 2010, 87(2): 499-507.

[45] Jacques P, Hbid C, Destain J, et al. Optimization of biosurfactant lipopeptide production from Bacillus subtilis S499 by Plackett-Burman design.Twentieth Symposium on Biotechnology for Fuels and Chemicals. New Jersey:Humana Press, 1999: 223-233.

[46] Gancel F, Montastruc L, Liu T, et al. Lipopeptide overproduction by cell immobilization on iron-enriched light polymer particles. Process Biochemistry, 2009, 44(9): 975-978.

[47] Chtioui O, Dimitrov K, Gancel F, et al. Biosurfactants production by immobilized cells of Bacillus subtilis ATCC 21332 and their recovery by pertraction. Process Biochemistry, 2010, 45(11): 1795-1799.

[48] Chtioui O, Dimitrov K, Gancel F, et al. Rotating discs bioreactor, a new tool for lipopeptides production. Process Biochemistry, 2012, 47(12): 2020-2024.

[49] Chtioui O, Dimitrov K, Gancel F, et al. Selective fengycin production in a modified rotating discs bioreactor. Bioprocess and Biosystems Engineering, 2014, 37(2): 107-114.

[50] Davis D A, Lynch H C, Varley J. The production of surfactin in batch culture by Bacillus subtilis ATCC 21332 is strongly influenced by the conditions of nitrogen metabolism. Enzyme and Microbial Technology, 1999, 25(3): 322-329.

[51] Lee B S, Kim E K. Lipopeptide production from Bacillus sp. GB16 using a novel oxygenation method. Enzyme and Microbial Technology, 2004, 35(6): 639-647.

[52] Li X, Yang H, Yu H M, et al. Overexpression of specific proton motive force-dependent transporters facilitate the export of surfactin in Bacillus subtilis. Journal of Industrial Microbiology & Biotechnology, 2015, 42(1): 93-103.

[1] YANG Fei-yun,YANG Tian-rui,LIU Kun,CUI Shuang,WANG Rui-gang,LI Guo-jing. Flavonoids Metabolism and Antimicrobial Activity of Arabidopsis Heterologous Expressing CiRS Gene[J]. China Biotechnology, 2019, 39(11): 22-30.
[2] Yu-shuai LIU,Jie ZHANG,Jin ZHONG,Jing LI,Li-qiang MENG,Shu-mei ZHANG. Isolation and Identification of Antibacterial Lipopeptides Fengycin Produced by Bacillus amyloliquefaciens TF28 and Its Anti-fungal Mechanism Studies[J]. China Biotechnology, 2018, 38(10): 20-29.
[3] SUN Li-jun, WANG Ya-ling, LIU Huan-min, XU De-feng, ZHANG Yong-pin, NIE Fang-hong. Identification of Antimicrobial Lipopetides Component Produced by Isolate from Douchi and Its Antimicrobial Properties[J]. China Biotechnology, 2013, 33(7): 50-56.
[4] ZHAO Peng-chao, QUAN Chun-shan, JIN Li-ming, WANG Li-na, FAN Shen-di. Effects of Different Nitrogen and Carbon Sources on the Production of Antifungal Lipopeptides from Bacillus amyloliquefaciens Q-426[J]. China Biotechnology, 2012, 32(10): 50-56.
[5] . Bacillus natto TK-1产脂肽的纯化、抑菌活性及其表面活性剂特性的初步探讨[J]. China Biotechnology, 2008, 28(1): 44-48.
[6] . Overexpression of the fusion gene encoding bovine antimicrobial peptides Bac7-Bac5 in Escherichia coli, and purification and antimicrobial activity of the fusion protein[J]. China Biotechnology, 2007, 27(3): 65-70.