Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (8): 38-45    DOI: 10.13523/j.cb.20160806
    
Study on the VC One Step Fermentation Under Glutathione
ZHAI Bing-bing, MA Qian, DING Ming-zhu, YUANG Ying-jin
School of Chemical Engineering, Key Laboratory of Systems Bioengineering(Ministry of Education), Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
Download: HTML   PDF(1132KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The aims are to find the effect of GSH on the two bacteria Ketogulonicigenium vulgare and Gluconobacter oxydans in vitamin C one-step fermentation process.It was found that addition of 1mg/ml glutathione to the 5L fermentation by K. vulgare-G. oxydans consortium significantly enhanced the production of 2-KGA by 22.8%. According to the 16S rDNA realtime fluorescence quantitative PCR analysis, the final biomass of K. vulgare increased to 148% and G. oxydans decreased to 61% relative to the control strain. Using the metabolomics methods, it is found that glutathione could promote pentose phosphate pathway, citric acid cycle, the sulfate and other metabolic pathways of K. vulgare, and glutathione can at the same time slow down the consumption of L-sorbose by G. oxydans to improve fermentation efficiency of the consortium.



Key wordsGlutathione      Gluconobacter oxydans      Ketogulonicigenium vulgare      Metabolomics     
Received: 28 January 2016      Published: 25 August 2016
ZTFLH:  Q939.97  
Cite this article:

ZHAI Bing-bing, MA Qian, DING Ming-zhu, YUANG Ying-jin. Study on the VC One Step Fermentation Under Glutathione. China Biotechnology, 2016, 36(8): 38-45.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20160806     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I8/38

[1] Pompella A, Visvikis A, Paolicchi A, et al. The changing faces of glutathione, a cellular protagonist. Biochemical Pharmacology, 2003, 66(8):1499-1503.
[2] Kowalska K, Zalewska M, Milnerowicz H. The application of capillary electrophoresis in the determination of glutathione in healthy women's blood. Journal of Chromatographic Science, 2015, 53(2):353-359.
[3] Pastore A, Piemonte F, Locatelli M, et al. Determination of blood total, reduced, and oxidized glutathione in pediatric subjects. Clinical Chemistry, 2001, 47(8):1467-1469.
[4] Scholz R W, Graham K S, Gumpricht E, et al. Mechanism of interaction of vitamin E and glutathione in the protection against membrane lipid peroxidation. Annals of the New York Academy of Sciences, 1989, 570(1):514-517.
[5] Neri M, Fineschi V, Di Paolo M, et al. Cardiac oxidative stress and inflammatory cytokines response after myocardial infarction. Current Vascular Pharmacology, 2015, 13(1):26-36.
[6] Kumar C, Igbaria A, D'autreaux B, et al. Glutathione revisited:a vital function in iron metabolism and ancillary role in thiol-redox control. The EMBO Journal, 2011, 30(10):2044-2056.
[7] Aquilano K, Baldelli S, Ciriolo M R. Glutathione:new roles in redox signaling for an old antioxidant. Frontiers in Pharmacology,2014, 5:196.
[8] Hu Y, Wan H, Li J, et al. Enhanced production of l-sorbose in an industrial Gluconobacter oxydans strain by identification of a strong promoter based on proteomics analysis. Journal of Industrial Microbiology & Biotechnology, 2015, 42(7):1039-1047.
[9] Liu L, Li Y, Zhang J, et al. Complete genome sequence of the industrial strain Ketogulonicigenium vulgare WSH-001. Journal of Bacteriology, 2011, 193(21):6108-6109.
[10] Du J, Bai W, Song H, et al. Combinational expression of sorbose/sorbosone dehydrogenases and cofactor pyrroloquinoline quinone increases 2-keto-l-gulonic acid production in Ketogulonigenium vulgare-Bacillus cereus consortium. Metabolic Engineering, 2013, 19:50-56.
[11] Zhang J, Zhou J, Liu J, et al. Development of chemically defined media supporting high cell density growth of Ketogulonicigenium vulgare and Bacillus megaterium. Bioresource Technology, 2011, 102(7):4807-4814.
[12] Ye C, Zou W, Xu N, et al. Metabolic model reconstruction and analysis of an artificial microbial ecosystem for vitamin C production. Journal of Biotechnology, 2014, 182:61-67.
[13] Zhu Y, Liu J, Du G, et al. Sporulation and spore stability of Bacillus megaterium enhance Ketogulonigenium vulgare propagation and 2-keto-L-gulonic acid biosynthesis. Bioresource Technology, 2012, 107:399-404.
[14] Sugisawa T, Miyazaki T, Hoshino T. Microbial production of L-ascorbic acid from D-sorbitol, L-sorbose, L-gulose, and L-sorbosone by Ketogulonicigenium vulgare DSM 4025. Bioscience, Biotechnology, and Biochemistry, 2005, 69(3):659-662.
[15] Sonoyama T, Kageyama B, Honjo T. Process for producing 2-keto-l-gulonic acid:U.S. Patent 3,922,194. 1975-11-25.
[16] Gao L, Hu Y, Liu J, et al. Stepwise metabolic engineering of Gluconobacter oxydans WSH-003 for the direct production of 2-keto-l-gulonic acid from d-sorbitol. Metabolic Engineering, 2014, 24:30-37.
[17] Zou W, Liu L, Zhang J, et al. Reconstruction and analysis of a genome-scale metabolic mod of the vitamin C producing industrial strain Ketogulonicigenium vulgare WSH-001. Journal of Biotechnology, 2012, 161(1), 42-48.
[18] Ma Q, Zhang W, Zhang L, et al. Proteomic analysis of Ketogulonicigenium vulgare under glutathione reveals high demand for thiamin transport and antioxidant protection. PloS One, 2012, 7(2):e32156.
[19] Huang Z, Zou W, Liu J, et al. Glutathione enhances 2-keto-l-gulonic acid production based on Ketogulonicigenium vulgare model iWZ663. Journal of Biotechnology, 2013, 164(4):454-460.
[20] Zhou J, Ma Q, Yi H, et al. Metabolome profiling reveals metabolic cooperation between Bacillus megaterium and Ketogulonicigenium vulgare during induced swarm motility. Applied and Environmental Microbiology, 2011, 77(19):7023-7030.
[21] Du J, Zhou J, Xue J, et al. Metabolomic profiling elucidates community dynamics of the Ketogulonicigenium vulgare-Bacillus megaterium consortium. Metabolomics, 2012, 8(5):960-973.
[22] Ding M Z, Zou Y, Song H, et al. Metabolomic analysis of cooperative adaptation between co-cultured Bacillus cereus and Ketogulonicigenium vulgare. PloS One, 2014, 9(4):e94889.
[23] Shinjoh M, Tazoe M, Hoshino T. NADPH-dependent L-sorbose reductase is responsible for L-sorbose assimilation in Gluconobacter suboxydans IFO 3291. Journal of Bacteriology, 2002, 184(3):861-863.

[1] ZHANG Xue, TAO Lei, QIAO Sheng, DU Bing-hao, GUO Chang-hong. Roles of Glutathione S-transferase in Plant Tolerance to Abiotic Stresses[J]. China Biotechnology, 2017, 37(3): 92-98.
[2] ZHAI Bing-bing, DONG Xiu-tao, DING Ming-zhu, YUAN Ying-jin. Analysis on and Construction of the VC One Step Fermentation of Three Strains[J]. China Biotechnology, 2016, 36(12): 72-78.
[3] HU Yan-zhen, WEI Jun-ying, LUO Guang-ming. Research on Glutathione-related Signaling Pathway in Liver Diseases[J]. China Biotechnology, 2015, 35(10): 72-77.
[4] WANG Wei-wei, Tang Liang, ZHOU Wen-long, YANG Yan, GAO Bo, ZHAO Yun-Feng, WANG Wei. Progress in the Biosynthesis and Metabolism of Glutathione[J]. China Biotechnology, 2014, 34(7): 89-95.
[5] WANG Cheng, SUI Chun-hong, YAN Gang-lin, LÜ Shao-wu, MU Ying. Cysteine Auxotrophic Expression and Identification of Antiviral Selenium-containing Peptide[J]. China Biotechnology, 2014, 34(4): 16-20.
[6] JIA Cui-cui, JI Jing, WANG Gang, TIAN Xiao-wei, DU Xi-long, GUAN Chun-feng, JIN Chao, WU Dian-yun. Over-expression of Glutathione Synthetase Gene Enhances Cadmium Tolerance in Transgenic Tobacco Plant[J]. China Biotechnology, 2014, 34(10): 79-86.
[7] WANG Yu-lei, ZHU Jian, WEI Gong-yuan, XU Hong-qing, WANG Cheng-fu. Increased Co-production of S-adenosylmethionine and Glutathione by Sodium Citrate Addition[J]. China Biotechnology, 2013, 33(8): 51-55.
[8] LUO Er-mei, YU Li, ZHANG Jia-wen, LIU Jing. The Effect of Reduced Glutathione to the Chondrogenic Differentiation of Human Umbilical Cord Mesenchymal Stem Cells[J]. China Biotechnology, 2013, 33(3): 1-8.
[9] CHEN Yong-lu, WU Mian-bin, LIN Jian-ping, YANG Li-rong, CEN Pei-lin. Characterization of GshF Expressed in Escherichia coli[J]. China Biotechnology, 2013, 33(12): 21-28.
[10] WANG Da-hui, XU Hong-qing, WANG Cheng-fu, WEI Gong-yuan. The Role of Acid Stress on Improved Performance of Selenium/glutathione-Enriched Candida utilis[J]. China Biotechnology, 2013, 33(11): 81-85.
[11] DAI Xiao-yan, SHEN Xiao-bo, ZHU Hong-yang, XU Hong. Short-chain D-arabitol Dehydrogenase from Gluconobacter oxydans NH-10[J]. China Biotechnology, 2010, 30(11): 39-43.
[12] LIU Guan-Lan, LI Tian, LIU Jin-Yuan, YAN Ze-Min, DUAN Meng-Xing. Protection Effects of Prokaryotic Expressed Radish Phospholipid Hydroperoxide Glutathione Peroxidase and Glutathione on Hydroperoxidemediated Injury in Mouse NIH3T3 Fibroblasts[J]. China Biotechnology, 2010, 30(09): 13-18.
[13] CENG Wei-Jun, WANG Shui-Beng, LI Xiao-Fang, XU Ping, WANG Rui-Gang. A Set of Genes Up-regulated by Cadmium Ions and Their Function under Cadmium Stress in Arabidopsis thaliana[J]. China Biotechnology, 2010, 30(05): 49-56.
[14] . Screening and Metabolic Flux Analysis of Glutathione-high-yielding strain from Saccharomyces cerevisiae[J]. China Biotechnology, 2008, 28(7): 110-115.
[15] . Cultural Conditions for Production of Glutathione by Mutant Saccharomyces J-X25[J]. China Biotechnology, 2006, 26(07): 48-51.