Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (2/3): 116-128    DOI: 10.13523/j.cb.2011014
    
Research Progress in Isothermal Amplification of Nucleic Acid Based on Microfluidic Chip
SHI Zhong-lin1,CUI Jun-sheng2,YANG Ke2,HU An-zhong2,LI Ya-nan2,LIU Yong2,DNEG Guo-qing2,ZHU Can-can2,**(),ZHU Ling2,**()
1 Anhui University, Hefei 230601, China
2 Hefei Institute of Physical Science, Chinese Academy of Sciences,Anhui Institute of Optics and Precision Machinery,Anhui Biomedical Optical Instrument Engineering Technology Research Center,Anhui Medical Optical Diagnosis and Treatment Technology and Equipment Engineering Laboratory,Hefei 230031, China
Download: HTML   PDF(43117KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The isothermal amplification technology of nucleic acid is a molecular amplification technology which can amplify nucleic acid efficiently in a constant temperature system. It can realize exponential growth of target gene in a short time. The microfluidic chip should not be too close to the surface, but should not be too close to the surface. Several steps, such as sample preparation, nucleic acid enrichment, purification and detection, should be integrated onto a “miniaturized”chip, and should be automatically treated to get the experimental result:“sample in, result out”. The combination of the isothermal nucleic acid amplification technology and microfluidic chip can not only realize rapid nucleic acid amplification, but also reduce the dependence on experimental equipment. It has a broad application prospect in bedside instant diagnosis and pathogen rapid screening.The principle of isothermal amplification technology and the application of isothermal amplification technology of nucleic acid based on microfluidic chip are reviewed, and the development trend and application prospect of integrated microfluidic chip are prospeced.



Key wordsMicrofluidic chip      Isothermal nucleic acid amplification      Bedside instant diagnosis     
Received: 05 November 2020      Published: 08 April 2021
ZTFLH:  Q52Q819  
Corresponding Authors: Can-can ZHU,Ling ZHU     E-mail: zhucancan@aiofm.ac.cn;zhul@aiofm.ac.cn
Cite this article:

SHI Zhong-lin,CUI Jun-sheng,YANG Ke,HU An-zhong,LI Ya-nan,LIU Yong,DNEG Guo-qing,ZHU Can-can,ZHU Ling. Research Progress in Isothermal Amplification of Nucleic Acid Based on Microfluidic Chip. China Biotechnology, 2021, 41(2/3): 116-128.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2011014     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I2/3/116

参数 环介导扩增(LAMP) 链替代扩增(SDA) 重组酶扩增(RPA) 滚环扩增(RCA)
发明年份 2000年 1992年 2006年 1998年
引物数量 4~6 4 2 1
温度(℃) 60~65 37 30~42 37
时间(min) 60~90 120 20 60
产物检测 凝胶电泳、浊度仪、
光学传感器(吸光度)
凝胶电泳、实时荧光 实时荧光 凝胶电泳
多重检测
优势 特异性高、操作简单、
快速
节能、反应速度快 引物设计简单、稳定性好、
干燥的颗粒试剂有助于
现场诊断
特异性好、可进行SNP检测
劣势 引物设计复杂,不能进行
多重扩增
酶选择复杂、扩增长
片段效率较低
不能用于后续反应 引物设计复杂,酶价格高
Table 1 Comparison of performance of several thermostatic amplification techniques
Fig.1 LAMP reaction schematic (a) Designing LAMP primer (b) The forming stage of circulus (c) Cycle amplification stage
Fig.2 Eight-channel PDMS-glass hybrid microfluidic chip for LAMP and Quantitative analysis unit (a) Photograph of an eight-channel PDMS-glass hybrid microfluidic chip (b) Schematic drawing of an eight-channel PDMS-glass hybrid microfluidic chip (c) Photograph of the quantitative analysis unit (d) Schematic illustration of the quantitative analysis unit
Fig.3 RCA reaction schematic
Fig.4 RPA reaction schematic
Fig.5 Photo of foil tray containing liquid reagent container and lyophilized reagent (a)Photograph of the thermoformed lab-on-a-chip cartridge. The foil disc features a chamber with a glass capillary containing 50?L buffer for RPA and a chamber with a centrifuge.A capillary siphon and a centrifuge-pneumatic valve are integrated for fluid control. An aliquoting structure splits the 50?L buffer into 5 × 10μL (b)Photograph of a foil disc assembled with liquid reagent containers and lyophilisate reagents featuring 6 fluidic structures, each capable of processing 5 assays in parallel. For demonstration purposes the buffer is replaced by red ink
Fig.6 HDA reaction schematic
Fig.7 SDA reaction schematic
Fig.8 MDA reaction schematic
Fig.9 Microarray MDA system
Fig.10 NASBA reaction schematic
[1]   Chang W H, Wang C H, Lin C L, et al. Rapid detection and typing of live bacteria from human joint fluid samples by utilizing an integrated microfluidic system. Biosensors and Bioelectronics, 2015,66:148-154.
pmid: 25460896
[2]   Rollo F, Salvi R, Amici A, et al. Polymerase chain reaction fingerprints. Nucleic Acids Research, 1987,15(21):9094-9094.
pmid: 3684589
[3]   Mullis K, Faloona F, Scharf S, et al. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symposia on Quantitative Biology, 1986,51:263-273.
doi: 10.1101/sqb.1986.051.01.032 pmid: 3472723
[4]   Mullis K B, Faloona F A. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods in Enzymology, 1987,155:335-350.
[5]   Zhou W C, Wu Y H, Hao P, et al. Highly sensitive and multi-parameter optical detection for whole blood on centrifugal microfluidic chip. Optics and Precision Engineering, 2013,21(11):2821.
[6]   Manz A, Graber N, Widmer H M. Miniaturized total chemical analysis systems-a novel concept for chemical sensing. Sensors and Actuators B: Chemical, 1990,1(1-6):244-248.
[7]   Zatti M S, Arantes T D, Theodoro R C. Isothermal nucleic acid amplification techniques for detection and identification of pathogenic fungi: A review. Mycoses, 2020,63(10):1006-1020.
doi: 10.1111/myc.13140 pmid: 32648947
[8]   Jiang S, Li Y. Principle and application of isothermal amplification technology. Chinese Journal of Laboratory Medicine, 2020,43(5):591-596.
[9]   Giuffrida M C, Zanoli L M, D’Agata R, et al. Isothermal circular-strand-displacement polymerization of DNA and microRNA in digital microfluidic devices. Analytical and Bioanalytical Chemistry, 2015,407(6):1533-1543.
[10]   Ye X, Li Y, Wang L J, et al. All-in-one microfluidic nucleic acid diagnosis system for multiplex detection of sexually transmitted pathogens directly from genitourinary secretions. Talanta, 2021,221:121462-121462.
pmid: 33076082
[11]   叶璟, 朱慧. 核酸等温扩增产物检测方法的研究进展. 科技通报, 2019,35(3):215-218.
[11]   Ye J, Zhu H. Research progress in the detection methods of isothermal nucleic acid amplification amplicons. Bulletin of Science and Technology, 2019,35(3):215-218.
[12]   Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 2000,28(12):e63.
doi: 10.1093/nar/28.12.e63 pmid: 10871386
[13]   Xu G L, Hu L, Zhong H Y, et al. Cross priming amplification: Mechanism and optimization for isothermal DNA amplification. Scientific Reports, 2012,2:246.
doi: 10.1038/srep00246 pmid: 22355758
[14]   Feng T, Li S F, Wang S N, et al. Cross priming amplification with nucleic acid test strip analysis of mutton in meat mixtures. Food Chemistry, 2018,245:641-645.
[15]   Fire A, Xu S Q. Rolling replication of short DNA circles. Proceedings of the National Academy of Sciences, 1995,92(10):4641-4645.
[16]   Lizardi P M, Huang X H, Zhu Z R, et al. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nature Genetics, 1998,19(3):225-232.
pmid: 9662393
[17]   Piepenburg O, Williams C H, Stemple D L, et al. DNA detection using recombination proteins. PLoS Biology, 2006,4(7):e204.
doi: 10.1371/journal.pbio.0040204 pmid: 16756388
[18]   Vincent M, Xu Y, Kong H M. Helicase-dependent isothermal DNA amplification. EMBO Reports, 2004,5(8):795-800.
doi: 10.1038/sj.embor.7400200 pmid: 15247927
[19]   Walker G T, Little M C, Nadeau J G, et al. Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proceedings of the National Academy of Sciences, 1992,89(1):392-396.
[20]   Anonymous. Nucleic acid sequence-based amplification (NASBA) for detection of EF-TU mRNA of mycobacterium tuberculosis. Clinical Biochemistry, 2005,38(9):843-843.
[21]   Hill C S. Molecular diagnostic testing for infectious diseases using TMA technology. Expert Review of Molecular Diagnostics, 2001,1(4):445-455.
doi: 10.1586/14737159.1.4.445 pmid: 11901859
[22]   Notomi T, Nagamine K, Hase T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Molecular and Cellular Probes, 2002,16(3):223-229.
[23]   Gill P, Ranjbar B, Saber R. Scanning tunneling microscopy of cauliflower-like DNA nanostructures synthesised by loop-mediated isothermal amplification. IET Nanobiotechnology, 2011,5(1):8-13.
doi: 10.1049/iet-nbt.2010.0008 pmid: 21241156
[24]   Kumar S T, Krishnan N A, Rajan J S J , et al. Visual loop-mediated isothermal amplification (LAMP) for the rapid diagnosis of Enterocytozoon hepatopenaei (EHP) infection. Parasitology Research, 2018,117(5):1485-1493.
doi: 10.1007/s00436-018-5828-4 pmid: 29550998
[25]   Notomi T, Mori Y, Tomita N, et al. Loop-mediated isothermal amplification (LAMP): principle, features, and future prospects. Journal of Microbiology, 2015,53(1):1-5.
[26]   Fang X E, Liu Y Y, Kong J L, et al. Loop-mediated isothermal amplification integrated on microfluidic chips for point-of-care quantitative detection of pathogens. Analytical Chemistry, 2010,82(7):3002-3006.
pmid: 20218572
[27]   Lee S Y, Huang J G, Chuang T L, et al. Compact optical diagnostic device for isothermal nucleic acids amplification. Sensors and Actuators B: Chemical, 2008,133(2):493-501.
[28]   Ou X C, Song Y Y, Zhao B, et al. A multicenter study of cross-priming amplification for tuberculosis diagnosis at peripheral level in China. Tuberculosis, 2014,94(4):428-433.
doi: 10.1016/j.tube.2014.04.006 pmid: 24880705
[29]   Wang Y, Wang Y, Ma A J, et al. Rapid and sensitive detection of Listeria monocytogenes by cross-priming amplification of lmo0733 gene. Fems Microbiology Letters, 2014,361(1):43-51.
doi: 10.1111/1574-6968.12610 pmid: 25273275
[30]   Liu W Z, Zhou Y, Fan Y D, et al. Development of cross-priming amplification coupled with vertical flow visualization for rapid detection of infectious spleen and kidney necrosis virus (ISKNV) in mandarin fish, Siniperca chuatsi. Journal of Virological Methods, 2018,253:38-42.
[31]   Xiang Y, Yan L, Zheng X C, et al. Rapid detection of Pseudomonas aeruginosa by cross priming amplification. Journal of Integrative Agriculture, 2020,19(10):2523-2529.
[32]   Chen H, Huang S W, Xu C P, et al. The establishment of rapid detection of Staphylococcus aureus by cross primer amplification technology. Chinese Journal of Health Laboratory Technology, 2019,29(11), 1303-1305.
[33]   Murakami T, Sumaoka J, Komiyama M. Sensitive isothermal detection of nucleic-acid sequence by primer generation-rolling circle amplification. Nucleic Acids Research, 2009,37(3):e19.
[34]   Lee D C, Yip S P, Lee T M H . Simple and sensitive electrochemical DNA detection of primer generation-rolling circle amplification. Electroanalysis, 2013,25(5):1310-1315.
[35]   Xue Q, Lv Y, Cui H, et al. A DNA nanomachine based on rolling circle amplification-bridged two-stage exonuclease III-assisted recycling strategy for label-free multi-amplified biosensing of nucleic acid. Analytica Chimica Acta, 2015,856:103-109.
[36]   Murakami T, Sumaoka J, Komiyama M. Sensitive RNA detection by combining three-way junction formation and primer generation-rolling circle amplification. Nucleic Acids Research, 2012,40(3):e22.
[37]   Conze T, Shetye A, Tanaka Y, et al. Analysis of genes, transcripts, and proteins via DNA ligation. Annual Review of Analytical Chemistry(Palo Alto, Calif), 2009,2:215-239.
[38]   Stougaard M, Juul S, Andersen F F, et al. Strategies for highly sensitive biomarker detection by Rolling Circle Amplification of signals from nucleic acid composed sensors. Integrative Biology, 2011,3(10):982-992.
[39]   Larsson C, Koch J, Nygren A, et al. In situ genotyping individual DNA molecules by target-primed rolling-circle amplification of padlock probes. Nature Methods, 2004,1(3):227-232.
doi: 10.1038/nmeth723 pmid: 15782198
[40]   Miller J C, Zhou H P, Kwekel J, et al. Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers. Proteomics, 2003,3(1):56-63.
doi: 10.1002/pmic.200390009 pmid: 12548634
[41]   Nallur G, Luo C H, Fang L H, et al. Signal amplification by rolling circle amplification on DNA microarrays. Nucleic Acids Research, 2001,29(23) : e118.
doi: 10.1093/nar/29.23.e118 pmid: 11726701
[42]   于志超, 陈林军, 赵治国, 等. 牛病毒性腹泻病毒检测技术研究进展. 动物医学进展, 2019,40(1):93-97.
[42]   Yu Z C, Chen L J, Zhao Z G, et al. Progress on detection methods of bovine viral diarrhea virus. Progress in Veterinary Medicine, 2019,40(1):93-97.
[43]   Kim J Y, Lee J L. Rapid detection of salmonella enterica serovar enteritidis from eggs and chicken meat by real-time recombinase polymerase amplification in comparison with the two-step rea--time PCR. Food Sleribenafety, 2016,36(3) : 402-411.
[44]   Fan X X, Li L, Zhao Y G. Clinical validation of two recombinase-based isothermal amplification assays (RPA/RAA) for the rapid detection of African Swine fever virus. Frontiers in Microbiology, 2020,11:1696-1696.
doi: 10.3389/fmicb.2020.01696 pmid: 32793160
[45]   Lutz S, Weber P, Focke M, et al. Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA). Lab on a Chip, 2010,10(7):887-893.
[46]   Zhang P, Wu Y, Wang L, et al. Primers with designed terminal sequence improved efficiency of helicase-dependent DNA amplification. Chinese Journal of Biochemistry and Molecular Biology, 2018,34(7):747-753.
[47]   Kim H J, Tong Y H, Tang W, et al. A rapid and simple isothermal nucleic acid amplification test for detection of herpes simplex virus types 1 and 2. Journal of Clinical Virology, 2011,50(1):26-30.
[48]   Kolm C, Martzy R, Führer M, et al. Detection of a microbial source tracking marker by isothermal helicase-dependent amplification and a nucleic acid lateral-flow strip test. Scientific Reports, 2019,9:1-9.
doi: 10.1038/s41598-018-37186-2 pmid: 30626917
[49]   Xu D, Ming X, Gan M, et al. Rapid detection of Cronobacter spp. in powdered infant formula by thermophilic helicase-dependent isothermal amplification combined with silica-coated magnetic particles separation. Journal of Immunological Methods, 2018,462:54-58.
[50]   Barreda-García S, Miranda Castro R, De-Los-santos-álvarez N, et al. Helicase-dependent isothermal amplification: a novel tool in the development of molecular-based analytical systems for rapid pathogen detection. Analytical and Bioanalytical Chemistry, 2018,410(3):679-693.
doi: 10.1007/s00216-017-0620-3 pmid: 28932883
[51]   Barreda-García S, González-álvarez M J, De-Los-santos-álvarez N , et al. Attomolar quantitation of Mycobacterium tuberculosis by asymmetric helicase-dependent isothermal DNA-amplification and electrochemical detection. Biosensors and Bioelectronics, 2015,68:122-128.
[52]   Schwenkbier L, Pollok S, Rudloff A, et al. Non-instrumented DNA isolation, amplification and microarray-based hybridization for a rapid on-site detection of devastating Phytophthora kernoviae. The Analyst, 2015,140(19):6610-6618.
[53]   Tang W, Goldmeyer J, Kong H M. Development of a novel one-tube isothermal reverse transcription thermophilic helicase-dependent amplification platform for rapid RNA detection. Journal of Molecular Diagnostics , 2007,9(5):639-644.
[54]   Zhang Z H, Xiao L L, Lou Y, et al. Development of a multiplex real-time PCR method for simultaneous detection of Vibrio parahaemolyticus, Listeria monocytogenes and Salmonella spp.in raw shrimp. Food Control, 2015,51:31-36.
[55]   Walker G T, Fraiser M S, Schram J L, et al. Strand displacement amplification: an isothermal, in vitro DNA amplification technique. Nucleic Acids Research, 1992,20(7):1691-1696.
[56]   He Y Q, Zeng K, Zhang S Q, et al. Visual detection of gene mutations based on isothermal strand-displacement polymerase reaction and lateral flow strip. Biosensors and Bioelectronics, 2012,31(1):310-315.
[57]   Fang X X, Zhang H Q, Zhang F, et al. Real-time monitoring of strand-displacement DNA amplification by a contactless electrochemical microsystem using interdigitated electrodes. Lab on a Chip, 2012,12(17):3190-3196.
doi: 10.1039/c2lc40384f pmid: 22773155
[58]   Dean F B, Nelson J R, Giesler T L, et al. Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification. Genome Research, 2001,11(6):1095-1099.
[59]   de Bourcy C F A, de Vlaminck I, Kanbar J N, et al. A quantitative comparison of single-cell whole genome amplification methods. PLoS One, 2014,9(8):e105585.
pmid: 25136831
[60]   Marcy Y, Ishoey T, Lasken R S, et al. Nanoliter reactors improve multiple displacement amplification of genomes from single cells. PLoS Genetics, 2007,3(9):1702-1708.
[61]   Gole J, Gore A, Richards A, et al. Massively parallel polymerase cloning and genome sequencing of single cells using nanoliter microwells. Nature Biotechnology, 2013,31(12):1126-1132.
pmid: 24213699
[62]   Sidore A M, Lan F, Lim S W, et al. Enhanced sequencing coverage with digital droplet multiple displacement amplification. Nucleic Acids Research, 2016,44(7):e66.
pmid: 26704978
[63]   Compton J. Nucleic-acid sequence-based amplification. Nature, 1991,350(6313):91-92.
pmid: 1706072
[64]   Mader A, Riehle U, Brandstetter T, et al. Microarray-based amplification and detection of RNA by nucleic acid sequence based amplification. Analytical and Bioanalytical Chemistry, 2010,397(8):3533-3541.
pmid: 20596698
[65]   Tillmann R L, Simon A, Müller A, et al. Comparison of in-house PCR, rapid ELISA and NASBA technology for the detection of respiratory syncytial virus in clinical specimen. Journal of Clinical Virology, 2008,41(2):168-169.
doi: 10.1016/j.jcv.2007.10.005 pmid: 18024201
[66]   Rodríguez-Lázaro D, D’Agostino M, Pla M, et al. Construction strategy for an internal amplification control for real-time diagnostic assays using nucleic acid sequence-based amplification: development and clinical application. Journal of Clinical Microbiology, 2004,42(12):5832-5836.
[67]   Zhao X Y, Dong T, Yang Z C, et al. Compatible immuno-NASBA LOC device for quantitative detection of waterborne pathogens: Design and validation. Lab on a Chip, 2012,12(3):602-612.
[68]   Larry T M, Jeffrey M L, Michael G, et al. Sensitive detection of genetic variants of HIV-1 and HCV with an HIV-1/HCV assay based on transcription-mediated amplification. Journal of virological methods, 2002,102(1-2):139-155.
[69]   Chang C C, Chen C C, Wei S C, et al. Diagnostic devices for isothermal nucleic acid amplification. Sensors(Basel, Switzerland), 2012,12(6):8319-8337.
[70]   Smith A, Matsubara K, Mickelson E, et al. A comparative study of HLA-DRB typing by TMA/HPA versus PCR/SSOP. Human Immunology, 1996,47(1-2):O218-O218.
[71]   Giachetti C, Linnen J M, Kolk D P, et al. Highly sensitive multiplex assay for detection of human immunodeficiency virus type 1 and hepatitis C virus RNA. Journal of Clinical Microbiology, 2002,40(7):2408-2419.
pmid: 12089255
[1] Liang CHEN,Shan GAO,Hai-yang MAO,Yun-xiang WANG,Bin JI,Zhi-ying JIN,Lin KANG,Hao YANG,Jing-lin WANG. Design and Fabrication of Self-driven Microfluidic Chip with Ultra-large Surface Area[J]. China Biotechnology, 2019, 39(6): 17-24.
[2] Li-li JIANG,Jun-song ZHENG,Yan LI,Jun DENG,Li-chao FANG,Hui HUANG. Construction of Blood-brain Barrier in vitro Model Based on Microfluidic Chip[J]. China Biotechnology, 2017, 37(12): 1-7.
[3] ZHAO Zhen-li, CAI Shao-xi, DAI Xiao-zhen. Microfluidic Chip Application in Stem Cell Research[J]. China Biotechnology, 2011, 31(03): 81-86.
[4] DENG Han-chao, YIN Chang-cheng, LIU Guo-zhen, LIN Jian-rong, DENG Ping-jian. Progress in Nucleic Acid Detection Techniques for Genetically Modified Organisms[J]. China Biotechnology, 2011, 31(01): 86-95.