Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (10): 31-38    DOI: 10.13523/j.cb.2204069
技术与方法     
大鼠SUMO特异性蛋白酶1催化区蛋白制备及功能鉴定*
孟利,杜彩萍**()
徐州医科大学 江苏省脑病生物信息重点实验室 生物化学与分子生物学研究中心 徐州 221004
Protein Preparation and Activity Identification of Rat Sentrin-specific Protease 1 Catalytic Domain
Li MENG,Cai-ping DU**()
Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou 221004, China
 全文: PDF(2038 KB)   HTML
摘要:

目的: 制备大鼠SUMO特异性蛋白酶1(sentrin-specific protease,SENP1)催化结构域(SENP1C)蛋白,并鉴定其酶活性。方法: 分别以大鼠SENP1-pcDNA3.1和EGFP-pcDNA3.1重组体为模板,PCR扩增目的基因,克隆入pGEM-T载体;酶切鉴定后,再亚克隆入原核表达载体pET-28a;阳性重组体导入原核表达细胞BL-21,异丙基硫半乳糖苷(IPTG)诱导蛋白质表达;SDS-PAGE及考马斯亮蓝染色鉴定蛋白质的表达。Ni-NTA吸附纯化蛋白质并透析处理,SDS-PAGE及考马斯亮蓝染色鉴定蛋白质的纯度;1 μmol/L及5 μmol/L Tat-EGFP分别孵育HT22细胞不同时间,荧光显微镜下观察细胞转染情况。采用5 μmol/L Tat-SENP1C预孵育HT22细胞10 h,免疫印迹检测整体蛋白质的SUMO化水平;用5 μmol/L Tat-SENP1C预孵育HT22细胞或过表达Myc-Akt1和HA-SUMO1的HT22细胞10 h后,免疫沉淀和免疫印迹检测内源性和外源性Akt1与SUMO1的结合(SUMO化)。结果: Tat-SENP1C-pET-28a和Tat-EGFP-pET-28a重组原核表达载体成功构建,IPTG可以诱导蛋白质高表达;采用Ni-NTA纯化和透析可获得较高纯度的蛋白质;5 μmol/L Tat-EGFP孵育HT22 细胞10 h后,蛋白质穿膜效率较高;Tat-SENP1C重组蛋白可以显著降低HT22细胞中整体蛋白质的SUMO化以及内源性和外源性Akt1 SUMO化。结论: Tat-SENP1C-pET-28a和Tat-EGFP-pET-28a重组原核表达载体构建成功,且被IPTG诱导后可高效表达蛋白质;纯化的Tat-SENP1C蛋白具有较强的穿膜能力及酶活性。

关键词: SUMO 特异性蛋白酶1催化结构域原核表达载体去SUMO化蛋白激酶Bα    
Abstract:

Objective: Preparation and enzymatic activity identification of sentrin-specific protease1 (SENP1) catalytic domain (SENP1C). Methods: The target genes were amplified by PCR from SENP1-pcDNA3.1 and EGFP-pcDNA3.1, and then cloned into pGEM-T vector. After enzyme digestion, the digested cDNAs were then subcloned into the prokaryotic expression vector pET-28a. Next, the positive recombinants were transfected into prokaryotic expression cells BL-21, which were then induced by isopropyl thiogalactoside (IPTG). The protein expression was identified by SDS-PAGE and coomassie brilliant blue staining. The extracted proteins were purified by Ni-NTA and dialysis treatment, and the protein purity was further checked by SDS-PAGE and coomassie brilliant blue staining. HT22 cells was pre-incubated with 1 μmol/L or 5 μmol/L Tat-EGFP for different times, and cell transfection was observed by fluorescence microscope. After pretreatment with 5 μmol/L Tat-SENP1 for 10 h, the SUMOylation of overall protein in HT22 cells was detected by immunoblot analysis. In addition, immunoprecipitation and immunoblotting were used to evaluate endogenous and exogenous Akt1-SUMO1 conjugations in HT22 cells or HT22 cells overexpressing Myc-Akt1 and HA-SUMO1. Results: Tat-SENP1C-pET-28a and Tat-EGFP-pET-28a prokaryotic expression recombinants were successfully constructed, which were efficiently induced to express target proteins by IPTG. The high purity target proteins were obtained by Ni-NTA and dialysis. After incubation with 5 μmol/L Tat-EGFP for 10 h, the penetration efficiency was higher in HT22 cells. Tat-SENP1C reduced the levels of total SUMOylation and endogenous and exogenous Akt1-SUMO1 conjugations significantly. Conclusion: Tat-SENP1C-pET-28a and Tat-EGFP-pET-28a prokaryotic expression recombinants were successfully constructed, and can be highly induced to express target proteins by IPTG. The purified Tat-SENP1C retains strong membrane penetration ability and enzymatic activity.

Key words: Sentrin-specific protease 1    Catalytic domain    Prokaryotic expression vector    deSUMOylation    Akt1
收稿日期: 2022-04-26 出版日期: 2022-11-04
ZTFLH:  Q786  
基金资助: * 国家自然科学基金(81100852);江苏省高等学校自然科学研究重大项目(20KJA310010)
通讯作者: 杜彩萍     E-mail: caipingdu@xzhmu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孟利
杜彩萍

引用本文:

孟利,杜彩萍. 大鼠SUMO特异性蛋白酶1催化区蛋白制备及功能鉴定*[J]. 中国生物工程杂志, 2022, 42(10): 31-38.

Li MENG,Cai-ping DU. Protein Preparation and Activity Identification of Rat Sentrin-specific Protease 1 Catalytic Domain. China Biotechnology, 2022, 42(10): 31-38.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2204069        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I10/31

引物名称 引物序列(5'-3') 酶切位点
Tat-SENP1C上游 CCATGGGCTATGGCAGGAAGAAGCGGAGACAGCGACGAAGATCTCGAGCCCGGGAAAGATTG Nco I
Tat-SENP1C下游 GCGGCCGCCAAGAGCTTCCGGTGGAGGAT Not I
Tat-EGFP上游 CCATGGGCTATGGCAGGAAGAAGCGGAGACAGCGACGAAGAATGGTGAGCAAGGGCGAG Nco I
Tat-EGFP下游 GCGGCCGCCTTGTACAGCTCGTCCATG Not I
表1  Tat-SENP1C及Tat-EGFP引物
图1  Tat-SENP1C及Tat-EGFP原核表达载体的构建
图2  考马斯亮蓝染色方法鉴定重组蛋白的表达
图3  Tat-SENP1C及Tat-EGFP蛋白纯度的鉴定
图4  Tat-EGFP蛋白穿膜能力鉴定
图5  检测Tat-SENP1C蛋白的酶活性
[1] Hay R T. SUMO: a history of modification. Molecular Cell, 2005, 18(1): 1-12.
pmid: 15808504
[2] Bailey D, O’Hare P. Characterization of the localization and proteolytic activity of the SUMO-specific protease, SENP1. Journal of Biological Chemistry, 2004, 279(1): 692-703.
doi: 10.1074/jbc.M306195200 pmid: 14563852
[3] Kolli N, Mikolajczyk J, Drag M, et al. Distribution and paralogue specificity of mammalian deSUMOylating enzymes. The Biochemical Journal, 2010, 430(2): 335-344.
doi: 10.1042/BJ20100504
[4] Xu Z, Au S W N. Mapping residues of SUMO precursors essential in differential maturation by SUMO-specific protease, SENP1. The Biochemical Journal, 2005, 386(Pt 2): 325-330.
doi: 10.1042/BJ20041210
[5] Hickey C M, Wilson N R, Hochstrasser M. Function and regulation of SUMO proteases. Nat Rev Mol Cell Biol. 2012, 13(12):755-766.
doi: 10.1038/nrm3478
[6] Nayak A, Müller S. SUMO-specific proteases/isopeptidases: SENPs and beyond. Genome Biology, 2014, 15(7): 422.
doi: 10.1186/s13059-014-0422-2 pmid: 25315341
[7] Kunz K, Piller T, Müller S. SUMO-specific proteases and isopeptidases of the SENP family at a glance. Journal of Cell Science, 2018, 131(6): jcs211904.
[8] He J L, Shangguan X, Zhou W, et al. Glucose limitation activates AMPK coupled SENP1-Sirt 3 signalling in mitochondria for T cell memory development. Nature Communications, 2021, 12: 4371.
doi: 10.1038/s41467-021-24619-2
[9] Shao L, Zhou H J, Zhang H F, et al. SENP1-mediated NEMO deSUMOylation in adipocytes limits inflammatory responses and type-1 diabetes progression. Nature Communications, 2015, 6: 8917.
doi: 10.1038/ncomms9917 pmid: 26596471
[10] Yamaguchi T, Sharma P, Athanasiou M, et al. Mutation of SENP1/SuPr-2 reveals an essential role for desumoylation in mouse development. Molecular and Cellular Biology, 2005, 25(12): 5171-5182.
pmid: 15923632
[11] Sun M L, Chen X, Yin Y X, et al. Role of pericyte-derived SENP 1 in neuronal injury after brain ischemia. CNS Neuroscience & Therapeutics, 2020, 26(8): 815-828.
[12] Zhang H J, Wang Y, Zhu A X, et al. SUMO-specific protease 1 protects neurons from apoptotic death during transient brain ischemia/reperfusion. Cell Death & Disease, 2016, 7(11): e2484.
[13] Shen L N, Tatham M H, Dong C J, et al. SUMO protease SENP 1 induces isomerization of the scissile peptide bond. Nature Structural & Molecular Biology, 2006, 13(12): 1069-1077.
doi: 10.1038/nsmb1172
[14] Xu Z, Chau S F, Lam K H, et al. Crystal structure of the SENP 1 mutant C603S-SUMO complex reveals the hydrolytic mechanism of SUMO-specific protease. The Biochemical Journal, 2006, 398(3): 345-352.
doi: 10.1042/BJ20060526
[15] 孟利, 杜彩萍. 大鼠His-Akt1重组蛋白的真核表达、蛋白纯化及活性鉴定. 生物技术通报, 2020, 36(12): 98-103.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0497
Meng L, Du C P. Eukaryotic expression, purification and activity identification of rat his-Akt1 recombinant protein. Biotechnology Bulletin, 2020, 36(12): 98-103.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0497
[16] Du C P, Wang M, Geng C, et al. Activity-induced SUMOylation of neuronal nitric oxide synthase is associated with plasticity of synaptic transmission and extracellular signal-regulated kinase 1/2 signaling. Antioxidants & Redox Signaling, 2020, 32(1): 18-34.
[17] Li R, Wei J, Jiang C, et al. Akt SUMOylation regulates cell proliferation and tumorigenesis. Cancer Research, 2013, 73(18): 5742-5753.
doi: 10.1158/0008-5472.CAN-13-0538 pmid: 23884910
[18] 韦雪芳, 王冬梅, 刘思, 等. 信号肽及其在蛋白质表达中的应用. 生物技术通报, 2006(6): 38-42.
Wei X F, Wang D M, Liu S, et al. Signal sequence and its application to protein expression. Biotechnology Bulletin, 2006(6): 38-42.
[19] Wang F H, Wang Y, Zhang X, et al. Recent progress of cell-penetrating peptides as new carriers for intracellular cargo delivery. Journal of Controlled Release, 2014, 174: 126-136.
doi: 10.1016/j.jconrel.2013.11.020 pmid: 24291335
[20] Wu B H, Li M S, Li K K, et al. Cell penetrating peptide TAT-functionalized liposomes for efficient ophthalmic delivery of flurbiprofen: penetration and its underlying mechanism, retention, anti-inflammation and biocompatibility. International Journal of Pharmaceutics, 2021, 598: 120405.
doi: 10.1016/j.ijpharm.2021.120405
[21] Yau T Y, Molina O, Courey A J. SUMOylation in development and neurodegeneration. Development (Cambridge, England), 2020, 147(6): dev175703.
[22] Buccarello L, Dragotto J, Iorio F, et al. The pivotal role of SUMO-1-JNK-Tau axis in an in vitro model of oxidative stress counteracted by the protective effect of curcumin. Biochemical Pharmacology, 2020, 178: 114066.
doi: 10.1016/j.bcp.2020.114066
[23] Yang T Y, Sun J Y, Wei B, et al. SENP1-mediated NEMO de-SUMOylation inhibits intermittent hypoxia induced inflammatory response of microglia in vitro. Journal of Cellular Physiology, 2020, 235(4): 3529-3538.
doi: 10.1002/jcp.29241
[24] Wang H W, Yang T Y, Sun J Y, et al. SENP1 modulates microglia-mediated neuroinflammation toward intermittent hypoxia-induced cognitive decline through the de-SUMOylation of NEMO. Journal of Cellular and Molecular Medicine, 2021, 25(14): 6841-6854.
doi: 10.1111/jcmm.16689
[1] 郑启昌, 宋自芳, 郑幼伟, 喻方敏, 李毅清, 舒晓刚, 宋国英, 李振勇. 血管生成抑制因子arresten基因的克隆表达[J]. 中国生物工程杂志, 2002, 22(4): 89-92.