Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (1/2): 119-127    DOI: 10.13523/j.cb.2108059
综述     
定容条件下生物低温保存研究进展*
赵远恒1,2,郭嘉1,陈六彪1,**(),王俊杰1,2
1 中国科学院低温工程学重点实验室 中国科学院理化技术研究所 北京 100190
2 中国科学院大学 北京 100049
A Review on Bio-preservation at Sub-freezing Temperatures under Isochoric Conditions
ZHAO Yuan-heng1,2,GUO Jia1,CHEN Liu-biao1,**(),WANG Jun-jie1,2
1 Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(5018 KB)   HTML
摘要:

低温能降低生物体内生化反应速率,延长生物活性时间。为了避免传统常压冷冻保存过程中冰晶的产生对生物组织造成的破坏,Dr. Rubinsky提出2种在定容条件下对生物体进行低温保存的方法。一种方法是isochoric freezing(译作“定容冷冻”或“等容冷冻”),通过利用等容腔体内部分液体发生凝固,产生的冰膨胀所带来的压力来降低剩余液体的凝固点温度,而生物材料以过冷态保存在剩余液体内,不存在冰晶损伤。另一种方法是定容过冷保存,通过利用整个等容腔体内部系统处于过冷态,从而使生物材料处于过冷态也不存在冰晶损伤。主要对定容冷冻和定容过冷两种保存方法的原理、应用和研究进展进行综述,并展望了定容低温保存技术未来的研究方向。

关键词: 冷冻保存过冷保存定容冷冻定容过冷冰物理    
Abstract:

Low temperature can slow down biochemical reaction and extend the life of biological materials. In order to avoid the cryoinjury caused by the ice crystal during traditional isobaric (atmospheric pressure) freezing process, Dr. Rubinsky developed two new biopreservation technologies at isochoric (constant volume) conditions. One technology is isochoric freezing, during which part of liquid is frozen and the formed ice expands to generate hydrostatic pressure inside the rigid isochoric chamber and biomatters can be stored at subfreezing temperatures in supercooled phase without any internal ice formation damage. The other technology is isochoric supercooling, which can also preserve organisms in supercooling state with a higher stability in a rigid isochoric chamber, resulting in no damage from ice crystals. In this paper, the principle, application and research progress of isochoric freezing and isochoric supercooling are reviewed, and the possible future research direction of cryopreservation under isochoric conditions is prospected.

Key words: Cryopreservation    Supercooling    Isochoric freezing    Isochoric supercooling    Ice physics
收稿日期: 2021-08-26 出版日期: 2022-03-03
ZTFLH:  Q-1  
基金资助: * 国家重点研发计划(2018YFD0400605);北京市科技计划(Z1711000013 17016);中国科学院青年创新促进会基金(2019030)
通讯作者: 陈六彪     E-mail: chenliubiao@mail.ipc.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵远恒
郭嘉
陈六彪
王俊杰

引用本文:

赵远恒,郭嘉,陈六彪,王俊杰. 定容条件下生物低温保存研究进展*[J]. 中国生物工程杂志, 2022, 42(1/2): 119-127.

ZHAO Yuan-heng,GUO Jia,CHEN Liu-biao,WANG Jun-jie. A Review on Bio-preservation at Sub-freezing Temperatures under Isochoric Conditions. China Biotechnology, 2022, 42(1/2): 119-127.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2108059        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I1/2/119

图1  常压冷冻、超高压冷冻、定容冷冻和过冷保存对比
图2  定容冷冻腔体[9]
图3  定容腔体中的典型冷冻过程
图4  定容冷冻保存鱼体组织[28,29]
图5  定容冷冻系统中添加保护液
生物材料 温度/℃ 保存效果 参考文献
小鼠肺 -2 结构损坏较小,大多数指标和新鲜肺几乎一致 Okamoto等[45]
小鼠肾脏 -2 组织结构破坏小 Sultana等[46]
人体肝脏 -4 有效延长肝脏活性至27 h de Vries等[47]
红细胞 -20 有效保存100天 Huang等[10]
表1  几种常见生物样品过冷保存结果
图6  不同条件下过冷液体稳定性:从固定高度撞击扰动后[45]
[1] Zhan L, Li M G, Hays T, et al. Cryopreservation method for Drosophila melanogaster embryos. Nature Communications, 2021, 12:2412.
doi: 10.1038/s41467-021-22694-z pmid: 33893303
[2] 沈华萍, 丁春梅, 迟占有, 等. 不同降温速率对脐血干细胞冷冻复苏后生物学特性的影响. 生物工程学报, 2003, 19(4):489-492.
Shen H P, Ding C M, Chi Z Y, et al. Effects of different cooling rates on cryopreservation of hematopoietic stem cells from cord blood. Chinese Journal of Biotechnology, 2003, 19(4):489-492.
[3] 赵远恒. 定容与定压条件下食品低温保存研究. 北京:中国科学院大学, 2021.
Zhao Y H. Food cryopreservation under isochoric and isobaric conditions. Beijing: University of Chinese Academy of Sciences, 2021.
[4] 龚俊. 细胞冷冻保存研究进展. 中阿科技论坛(中英文), 2021(1):116-120.
Gong J. A review of research progress of domestic cell cryopreservation. China-Arab States Science and Technology Forum, 2021(1):116-120.
[5] 陈晓丽, 朱化彬, 郝海生, 等. 猪精子冷冻损伤研究进展. 中国生物工程杂志, 2010, 30(7):86-91.
Chen X L, Zhu H B, Hao H S, et al. Progress on the cryodamage of frozen-thawed boar spermatozoa. China Biotechnology, 2010, 30(7):86-91.
[6] Zhao Y H, Powell-Palm M J, Wang J J, et al. Analysis of global energy savings in the frozen food industry made possible by transitioning from conventional isobaric freezing to isochoric freezing. Renewable and Sustainable Energy Reviews, 2021, 151:111621.
doi: 10.1016/j.rser.2021.111621
[7] Zhao Y H, Ji W, Chen L B, et al. Effect of cryogenic freezing combined with precooling on freezing rates and the quality of golden pomfret (Trachinotus ovatus). Journal of Food Process Engineering, 2019, 42(8):e13296. DOI: 10.1111/jfpe.13296.
doi: 10.1111/jfpe.13296
[8] LeBail A, Chevalier D, Mussa D M, et al. High pressure freezing and thawing of foods: a review. International Journal of Refrigeration, 2002, 25(5):504-513.
doi: 10.1016/S0140-7007(01)00030-5
[9] Rubinsky B, Perez P A, Carlson M E. The thermodynamic principles of isochoric cryopreservation. Cryobiology, 2005, 50(2):121-138.
pmid: 15843002
[10] Huang H S, Yarmush M L, Usta O B. Long-term deep-supercooling of large-volume water and red cell suspensions via surface sealing with immiscible liquids. Nature Communications, 2018, 9:3201.
doi: 10.1038/s41467-018-05636-0
[11] Sharma A, Bischof J C, Finger E B. Liver cryopreservation for regenerative medicine applications. Regenerative Engineering and Translational Medicine, 2021, 7(1):57-65.
doi: 10.1007/s40883-019-00131-4
[12] Perez P A. Thermodynamic and heat transfer analysis for isochoric cryopreservation. Doctor Dissertation, Berkeley: University of California at Berkeley, 2006.
[13] Chang T, Zhao G. Ice inhibition for cryopreservation: materials, strategies, and challenges. Advanced Science (Weinheim, Baden Wurttemberg, Germany), 2021, 8(6):2002425.
[14] Moor H. Theory and practice of high pressure freezing. Cryotechniques in Biological Electron Microscopy. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987: 175-191.
[15] Hite B H. The effect of pressure in the preservation of milk: a preliminary report. West Virginia University Agricultural Experiment Station, 1899(54):15-35.
[16] de Cheftel J C, Culioli J. Effects of high pressure on meat: a review. Meat Science, 1997, 46(3):211-236.
pmid: 22062123
[17] Alizadeh E, Chapleau N, de Lamballerie M, et al. Effects of freezing and thawing processes on the quality of Atlantic salmon (Salmo salar) fillets. Journal of Food Science, 2007, 72(5):E279-E284. DOI: 10.1111/j.1750-3841.2007.00355.x.
doi: 10.1111/j.1750-3841.2007.00355.x
[18] Tironi V, LeBail A, de Lamballerie M. Effects of pressure-shift freezing and pressure-assisted thawing on sea bass (Dicentrarchus labrax) quality. Journal of Food Science, 2007, 72(7):C381-C387.
doi: 10.1111/jfds.2007.72.issue-7
[19] Su G M, Ramaswamy H S, Zhu S M, et al. Thermal characterization and ice crystal analysis in pressure shift freezing of different muscle (shrimp and porcine liver) versus conventional freezing method. Innovative Food Science & Emerging Technologies, 2014, 26:40-50.
[20] Zhu Z W, Li T, Sun D W. Pressure-related cooling and freezing techniques for the food industry: fundamentals and applications. Critical Reviews in Food Science and Nutrition, 2021, 61(17):2793-2808.
doi: 10.1080/10408398.2020.1841729
[21] Nida S, Moses J A, Anandharamakrishnan C. Isochoric freezing and its emerging applications in food preservation. Food Engineering Reviews, 2021, 13(4):812-821.
doi: 10.1007/s12393-021-09284-x
[22] Stonehouse G G, Evans J A. The use of supercooling for fresh foods: a review. Journal of Food Engineering, 2015, 148:74-79.
doi: 10.1016/j.jfoodeng.2014.08.007
[23] Kang T, You Y, Jun S. Supercooling preservation technology in food and biological samples: a review focused on electric and magnetic field applications. Food Science and Biotechnology, 2020, 29(3):303-321.
doi: 10.1007/s10068-020-00750-6
[24] Kiani H, Sun D W. Water crystallization and its importance to freezing of foods: a review. Trends in Food Science & Technology, 2011, 22(8):407-426.
[25] Ishiguro H, Rubinsky B. Mechanical interactions between ice crystals and red blood cells during directional solidification. Cryobiology, 1994, 31(5):483-500.
pmid: 7988158
[26] Zhao Y H, Powell-Palm M J, Ukpai G, et al. Phase change interface stability during isochoric solidification of an aqueous solution. Applied Physics Letters, 2020, 117(13):133701.
doi: 10.1063/5.0019878
[27] Powell-Palm M J, Rubinsky B, Sun W H. Freezing water at constant volume and under confinement. Communications Physics, 2020, 3:39.
doi: 10.1038/s42005-020-0303-9
[28] Wan L L, Powell-Palm M J, Lee C, et al. Preservation of rat hearts in subfreezing temperature isochoric conditions to - 8℃ and 78 MPa. Biochemical and Biophysical Research Communications, 2018, 496(3):852-857.
doi: 10.1016/j.bbrc.2018.01.140
[29] Nãstase G, Lyu C N, Ukpai G, et al. Isochoric and isobaric freezing of fish muscle. Biochemical and Biophysical Research Communications, 2017, 485(2):279-283.
doi: 10.1016/j.bbrc.2017.02.091
[30] Powell-Palm M J, Zhang Y F, Aruda J, et al. Isochoric conditions enable high subfreezing temperature pancreatic islet preservation without osmotic cryoprotective agents. Cryobiology, 2019, 86:130-133.
doi: S0011-2240(18)30597-2 pmid: 30629949
[31] Mikus H, Miller A, Nastase G, et al. The nematode Caenorhabditis elegans survives subfreezing temperatures in an isochoric system. Biochemical and Biophysical Research Communications, 2016, 477(3):401-405.
doi: 10.1016/j.bbrc.2016.06.089
[32] Bilbao-Sainz C, Sinrod A J G, Dao L, et al. Preservation of grape tomato by isochoric freezing. Food Research International, 2021, 143:110228.
doi: 10.1016/j.foodres.2021.110228 pmid: 33992342
[33] Bilbao-Sainz C, Sinrod A G J, Dao L, et al. Preservation of spinach by isochoric (constant volume) freezing. International Journal of Food Science & Technology, 2020, 55(5):2141-2151.
[34] Bilbao-Sainz C, Sinrod A, Powell-Palm M J, et al. Preservation of sweet cherry by isochoric (constant volume) freezing. Innovative Food Science & Emerging Technologies, 2019, 52:108-115.
[35] Bilbao-Sainz C, Sinrod A J G, Williams T, et al. Preservation of tilapia (Oreochromis aureus) fillet by isochoric (constant volume) freezing. Journal of Aquatic Food Product Technology, 2020, 29(7):629-640.
doi: 10.1080/10498850.2020.1785602
[36] Masson P, Tonello C, Balny C. High-pressure biotechnology in medicine and pharmaceutical science. Journal of Biomedicine & Biotechnology, 2001, 1(2):85-88.
[37] Sebert P. Fish at high pressure: a hundred year history. Comparative Biochemistry and Physiology Part A, 2002, 131(3):575-585.
doi: 10.1016/S1095-6433(01)00509-8
[38] Preciado J, Rubinsky B. The effect of isochoric freezing on mammalian cells in an extracellular phosphate buffered solution. Cryobiology, 2018, 82:155-158.
doi: S0011-2240(17)30391-7 pmid: 29684325
[39] Rubinsky B. Mass transfer into biological matter using isochoric freezing. Cryobiology, 2021, 100:212-215.
doi: 10.1016/j.cryobiol.2021.03.004 pmid: 33757760
[40] Zhao Y H, Bilbao-Sainz C, Wood D, et al. Effects of isochoric freezing conditions on cut potato quality. Foods, 2021, 10(5):974.
doi: 10.3390/foods10050974
[41] Bilbao-Sainz C, Zhao Y H, Takeoka G, et al. Effect of isochoric freezing on quality aspects of minimally processed potatoes. Journal of Food Science, 2020, 85(9):2656-2664.
doi: 10.1111/1750-3841.15377 pmid: 32860220
[42] Perez P A, Preciado J, Carlson G, et al. The effect of undissolved air on isochoric freezing. Cryobiology, 2016, 72(3):225-231.
doi: 10.1016/j.cryobiol.2016.04.002
[43] James C, Seignemartin V, James S J. The freezing and supercooling of garlic (Allium sativum L.). International Journal of Refrigeration, 2009, 32(2):253-260.
doi: 10.1016/j.ijrefrig.2008.05.012
[44] Fukuma Y, Yamane A, Itoh T, et al. Application of supercooling to long-term storage of fish meat. Fisheries Science, 2012, 78(2):451-461.
doi: 10.1007/s12562-011-0460-6
[45] Okamoto T, Nakamura T, Zhang J T, et al. Successful sub-zero non-freezing preservation of rat lungs at -2 degrees C utilizing a new supercooling technology. The Journal of Heart and Lung Transplantation, 2008, 27(10):1150-1157.
doi: 10.1016/j.healun.2008.07.008
[46] Sultana T, Lee J I, Park J H, et al. Supercooling storage for the transplantable sources from the rat and the rabbit: a preliminary report. Transplantation Proceedings, 2018, 50(4):1178-1182.
[47] de Vries R J, Tessier S N, Banik P D, et al. Supercooling extends preservation time of human livers. Nature Biotechnology, 2019, 37(10):1131-1136.
doi: 10.1038/s41587-019-0223-y
[48] Powell-Palm M J, Koh-Bell A, Rubinsky B. Isochoric conditions enhance stability of metastable supercooled water. Applied Physics Letters, 2020, 116(12):123702.
doi: 10.1063/1.5145334
[49] Powell-Palm M J, Charwat V, Charrez B, et al. Isochoric supercooled preservation and revival of human cardiac microtissues. Communications Biology, 2021, 4:1118.
doi: 10.1038/s42003-021-02650-9 pmid: 34552201
[1] 陈龙,朱化彬,沙里金,王栋,王宗礼,郝海生,程金华,韩伟东,杜卫华. 猪精液冷冻保存影响因素的研究进展及展望[J]. 中国生物工程杂志, 2008, 28(6): 113-117.
[2] 相建海. 海水养殖和良种培育的生物技术研究与开发[J]. 中国生物工程杂志, 1994, 14(6): 30-34.
[3] 孟建华. 道产子马的冷冻受精卵移植成功[J]. 中国生物工程杂志, 1988, 8(1): 69-69.