Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (8): 59-68    DOI: 10.13523/j.cb.20180808
技术与方法     
具有双重抗生素抗性的ε-聚赖氨酸高产菌株选育及生理特性 *
赵俊杰,张龙,王靓,陈旭升,毛忠贵()
江南大学工业生物技术教育部重点实验室 无锡 214122
Breeding and Physiological Characteristics of ε-Polylysine High-Producing Strain with Double Antibiotic Resistance
Jun-jie ZHAO,Long ZHANG,Liang WANG,Xu-sheng CHEN,Zhong-gui MAO()
Key Lab of Industrial Biotechnology of Education,School of Biotechnology,Jiangnan University,Wuxi 214122,China
 全文: PDF(1636 KB)   HTML
摘要:

以ε-聚赖氨酸产量为1.60g/L的Streptomyces albulus M-Z18为出发菌株,利用核糖体工程技术选育具有双重抗生素抗性的ε-聚赖氨酸高产菌株,并对高产菌株和出发菌株的生理生化性能进行比较。通过链霉素诱变成功选育出了1株遗传稳定的ε-聚赖氨酸产生菌S.albulus S-7,ε-聚赖氨酸产量为2.03g/L;对S.albulus S-7叠加巴龙霉素,获得1株遗传稳定的具有双重抗性的ε-聚赖氨酸产生菌S.albulus SP-14,ε-聚赖氨酸产量为2.37g/L,比出发菌株S.albulus M-Z18的ε-聚赖氨酸产量增加了48.10%。使用链霉素和巴龙霉素选育具有双重抗生素抗性的ε-聚赖氨酸高产菌株是一种有效的手段。

关键词: 发酵工程生理生化性能双重抗生素抗性ε-聚赖氨酸    
Abstract:

Streptomyces albulus M-Z18 with 1.60g/L yield of ε-Poly-L-lysine was used as initial strain to screen high-yield mutant,and the physiological and biochemical properties of high-yield mutant were compared with M-Z18.The ribosomal engineering technology was used to breed the high-yield mutant with double antibiotic resistance. A genetically stable strain named S-7, was successfully screened by streptomycin mutagenesis. The ε-Poly-L-lysine yield of S-7 was 2.03g/L. S-7 was used as initial strain to screen mutant with paromomycin,and obtained SP-14, with 2.37g/L yield of ε-Poly-L-lysine. The use of streptomycin and paromomycin to breed high-yield mutant with high antibiotic resistance is an effective method.

Key words: Fermentation engineering    Physiological and biochemical property    Double drug resistance    ε-Poly-L-lysine
收稿日期: 2018-04-02 出版日期: 2018-09-11
ZTFLH:  Q813  
基金资助: 江苏省产学研合作前瞻性联合研究(BY2016022-25)
通讯作者: 毛忠贵     E-mail: maozg@jiangnan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵俊杰
张龙
王靓
陈旭升
毛忠贵

引用本文:

赵俊杰,张龙,王靓,陈旭升,毛忠贵. 具有双重抗生素抗性的ε-聚赖氨酸高产菌株选育及生理特性 *[J]. 中国生物工程杂志, 2018, 38(8): 59-68.

Jun-jie ZHAO,Long ZHANG,Liang WANG,Xu-sheng CHEN,Zhong-gui MAO. Breeding and Physiological Characteristics of ε-Polylysine High-Producing Strain with Double Antibiotic Resistance. China Biotechnology, 2018, 38(8): 59-68.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180808        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I8/59

图1  S.albulus M-Z18在不同浓度链霉素和巴龙霉素的固体平板上的生长情况
筛选过程 突变数(M) 正突变数(P) 总菌落数(T) 突变率RM(%) 正突变率RP(%)
链霉素初筛 45 26 112 40.18 57.78
链霉素复筛 42 23 112 37.50 54.76
双重抗性初筛 19 7 61 31.15 36.84
双重抗性复筛 18 6 61 29.51 31.58
表1  突变结果统计
筛选方法 出发菌株 筛选浓度 平均产量(g/L) 最高产量(g/L)
筛选链霉素抗性菌株 M-Z18(1.60g/L) 链霉素:7~10mg/L 1.95±0.10 2.03±0.10
筛选双重抗性菌株 S-7(2.03g/L) 巴龙霉素:4.5~6.3mg/L 2.30±0.10 2.37±0.10
表2  筛选抗性菌株结果统计
图2  S.albulus S-7在不同浓度巴龙霉素的固体平板上的生长
图3  S.albulus M-Z18(a)和SP-14(b)在固体平板上的菌丝以及孢子形态差异
图4  S.albulus M-Z18(a)和SP-14(b)在摇瓶中发酵过程中不同时间点菌体形态比较(100×)
菌株编号 出发菌 筛选抗生素浓度
(mg/L)
ε-PL产量
(g/L)
抗性(mg/L)
Str Par
M-Z18 出发菌 1.60 6.00 9.00
S-3 M-Z18 6.00(链霉素) 2.03 7.00 15.00
S-7 M-Z18 6.00(链霉素) 2.03 7.00 15.00
S-47 M-Z18 6.00(链霉素) 2.02 7.00 15.00
SP-1 S-7 10.50(巴龙霉素) 2.20 25.00 20.00
SP-14 S-7 7.50(巴龙霉素) 2.37 40.00 28.00
表3  菌株抗性
图5  S.albulus M-Z18和SP-14在不同培养基中发酵ε-PL产量对比
图6  S.albulus M-Z18和SP-14摇瓶自然发酵比较
图7  S.albulus M-Z18和SP-14在摇瓶发酵过程中的酶活力比较
[1] 孟岳成, 王欣伟, 李延华 , 等. ε-聚赖氨酸对黄曲霉的作用机制初探. 食品科技, 2016 ( 12):239-244.
Meng Y C, Wang X W, Li Y H , et al. Preliminary study on the mode of action of ε-polylysin against Aspergillus flavus. Food Science and Technology, 2016(12):239-244.
[2] 石慧, 李婵娟, 张俊红 . ε-聚赖氨酸产生菌及其应用研究概述. 食品与发酵工业, 2016,42(9):263-269.
doi: 10.13995/j.cnki.11-1802/ts.201609044
Shi H, Li C J, Zhang J H . Research progress on the ε-polylysine producing strains and its application. Food and Fermentation Industries, 2016,42(9):263-269.
doi: 10.13995/j.cnki.11-1802/ts.201609044
[3] Bankar S B, Singhal R S . Optimization of poly-ε-lysine production by Streptomyces noursei NRRL 5126. Bioresource Technology, 2010,101(21):8370-8375.
doi: 10.1016/j.biortech.2010.06.004
[4] Zhang C, Zhang D R, He W , et al. A simple and sensitive method for screening ε-PL producing strains from soils. Journal of Shandong University (Health Sciences), 2006,44(11):1104-1107.
[5] 陈玮玮, 朱宏阳, 徐虹 . ε-聚赖氨酸高产菌株选育及分批发酵的研究. 工业微生物, 2007,37(2):28-30.
Chen W W, Zhu H Y, Xu H . Breeding of mass-producing ε-polylysine mutant and its batch fermentation. Industrial Microbiology, 2007,37(2):28-30.
[6] Zong H, Zhan Y, Li X , et al. A new mutation breeding method for Streptomyces albulus by an atmospheric and room temperature plasma. African Journal of Microbiology Research, 2012,6(13):3154-3158.
[7] Shima J, Hesketh A, Okamoto S , et al. Induction of actinorhodin production by rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3 (2). Journal of Bacteriology, 1996,178(24):7276-7284.
doi: 10.1128/jb.178.24.7276-7284.1996
[8] Wang G, Inaoka T, Okamoto S , et al. A novel insertion mutation in Streptomyces coelicolor ribosomal S12 protein results in paromomycin resistance and antibiotic overproduction. Antimicrobial Agents and Chemotherapy, 2009,53(3):1019-1026.
doi: 10.1128/AAC.00388-08
[9] Hopwood D A, Bibb M J, Chater K F , et al. Genetic manipulation of Streptomyces; A laboratory manual. Journal of Cell Biology, 1985,56(3):388-399.
doi: 10.1119/1.15669
[10] Liu Y J, Chen X S, Zhao J J , et al. Development ofmicrotiter plate culture method for rapid screening of ε-poly-l-lysine-producing strains. Applied Biochemistry and Biotechnology, 2017,183(4):1-15.
doi: 10.1007/s12010-017-2427-2 pmid: 28160134
[11] Itzhaki R F . Colorimetric method for estimating polylysine and polyarginine. Analytical Biochemistry, 1972,50(2):569-574.
doi: 10.1016/0003-2697(72)90067-X pmid: 4646067
[12] Zeng X, Chen X S, Ren X D , et al. Insights into the role of glucose and glycerol as a mixed carbon source in the improvement of ε-poly-l-lysine productivity. Applied biochemistry and biotechnology, 2014,173(8):2211-2224.
doi: 10.1007/s12010-014-1026-8
[13] 田淑翠, 牛延宁, 常忠义 , 等. 常压室温等离子体(ARTP)诱变茂源链霉菌菌株. 中国生物工程杂志, 2016,36(09):47-53.
Tian S C, Niu Y N, Chang Z Y , et al. The Streptoverticillium mobaraense mutagenesis using atmospheric pressure plasma at room temperature(ARTP)method. China Biotechnology, 2016,36(09):47-53.
[14] Okamoto-Hosoya Y, Hosaka T, Ochi K . An aberrant protein synthesis activity is linked with antibiotic overproduction in rpsL mutants of Streptomyces coelicolor A3 (2). Microbiology, 2003,149(11):3299-3309.
doi: 10.1099/mic.0.26490-0
[15] Hosaka T, Xu J, Ochi K . Increased expression of ribosome recycling factor is responsible for the enhanced protein synthesis during the late growth phase in an antibiotic-overproducing Streptomyces coelicolor ribosomal rpsL mutant. Molecular Microbiology, 2006,61(4):883-897.
doi: 10.1111/mmi.2006.61.issue-4
[16] 蒋永飞, 陈萍, 巫秋萍 . 达托霉素生产菌的激光诱变及组合抗性筛选. Advances in Microbiology, 2016,5(3):19-25.
doi: 10.12677/AMB.2016.53003
Jiang Y F, Chen P, Wu Q P . Laser mutation and combined antibiotics resistance selection to daptomycin producing strains. Advances in Microbiology, 2016,5(3):19-25.
doi: 10.12677/AMB.2016.53003
[17] 胡凯建, 吴爱祥, 王洪江 , 等. 产氨菌化学诱变及浸出低品位铜矿试验研究. 中南大学学报(自然科学版), 2016,47(10):3289-3294.
doi: 10.11817/j.issn.1672-7207.2016.10.001
Hu K J, Wu A X, Wang H H , et al. Experimental study on chemical mutation of ammonia-producing bacteria and bioleaching of low grade copper ore. Journal of Central South University(Science and Technology), 2016,47(10):3289-3294.
doi: 10.11817/j.issn.1672-7207.2016.10.001
[18] Wang G, Inaoka T, Okamoto S , et al. A novel insertion mutation in Streptomyces coelicolor ribosomal S12 protein results in paromomycin resistance and antibiotic overproduction. Antimicrobial Agents and Chemotherapy, 2009,53(3):1019-1026.
doi: 10.1128/AAC.00388-08
[19] 丁鑑, 张忠泽, 刘惠敏 , 等. 用扫描电镜观察链霉菌的孢子形态. 微生物学报, 1981,21(2):140-142.
Ding J, Zhang Z Z, Liu H M , et al. Spore morphology of Streptomyces viewed by scanning electron microscopy. Acta Microbiologica Sinica, 1981,21(2):140-142.
[20] 陈凝, 王永红, 储炬 , 等. 培养基成分和补料对阿维菌素发酵过程中除虫链霉菌菌丝形态的影响. 华中农业大学学报, 2007,26(4):496-501.
doi: 10.3321/j.issn:1000-2421.2007.04.016
Chen N, Wang Y H, Chu J , et al. Effect of medium composition and feeding strategy on morphology of Streptomyces avermitilis in Avermectin fermentation. Journal of Huazhong Agricultural University, 2007,26(4):496-501.
doi: 10.3321/j.issn:1000-2421.2007.04.016
[1] 徐庆毅. 我国生物技术发展的回顾与展望[J]. 中国生物工程杂志, 1996, 16(1): 1-5.
[2] 焦瑞身. 发酵工程的进展[J]. 中国生物工程杂志, 1993, 13(5): 16-33.
[3] 马国秋, 姜国扬. 北方生物工程中试基地在成长[J]. 中国生物工程杂志, 1989, 9(2): 61-61.
[4] 赵惠智. 一种引人注目的生物工程新技术—重组RNA技术[J]. 中国生物工程杂志, 1986, 6(2): 18-27.
[5] 郭丽华. 改造后的大肠杆菌氨基酸产量可望成倍增长[J]. 中国生物工程杂志, 1981, 1(3): 65-66.