Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (06): 90-97    DOI: 10.13523/j.cb.20140613
综述     
丁醇基因在大肠杆菌中表达的现状与展望
王庆龙1,2, 刘莉2, 史吉平2, 薛永常1, 孙俊松2
1. 大连工业大学生物工程学院 大连 116034;
2. 中国科学院上海高等研究院生物炼制实验室 上海 201210
Current Status and Prospects of the Expression of Butanol Pathway in Escherichia coli
WANG Qing-long1,2, LIU li2, SHI Ji-ping2, XUE Yong-chang1, SUN Jun-song2
1. School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;
2. Biorefinery Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
 全文: PDF(574 KB)   HTML
摘要:

随着化石能源过度开采带来的能源短缺与环境恶化,丁醇凭借着其优越的理化性质成为了最具潜力的绿色燃料之一。近几年微生物在生物能源生产研究中受到广泛关注,主要集中在梭菌丁醇合成途径的异源表达。目前利用大肠杆菌产丁醇的产量已经接近产丁醇的天然菌株的产量。然而,大肠杆菌产丁醇仍存在很多限制性因素。主要从乙酰辅酶A依赖途径评述大肠杆菌生产丁醇的限制因素,并讨论提高丁醇产量需要解决的问题。

关键词: 大肠杆菌生物丁醇丁醇代谢    
Abstract:

Biobutanol is regarded as a promising biofuel amid the energy crisis and global problems brought by excess use of fossil energy. In recent years, microorganisms including Escherichia coli are of interests in bioengineering studies for bioproduction of butanol, mostly done by heterologous expression of clostridia derived synthetic butanol pathway. Currently, the maximal yield of butanol production reported in Escherichia coli has been close to that in natural strains; however, there still existed many problems daunting the attempts to further improve the biobutanol level by using this microorganism. The engineered metabolic pathways for formation of n-butanol in E. coli were briefly summarized, the limiting factors existed in bioengineering studies were analyzed, and the possible solutions that might help in further improvement of biobutanol productivity using E. coli as host strain were shared.

Key words: Butanol metabolism    Escherichia coli    Biobutanol
收稿日期: 2014-03-12 出版日期: 2014-06-25
ZTFLH:  Q786  
基金资助:

国家自然科学基金资助项目(31270122)

通讯作者: 薛永常, 孙俊松     E-mail: xueych@dlpu.edu.cn;sunjs@sari.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王庆龙, 刘莉, 史吉平, 薛永常, 孙俊松. 丁醇基因在大肠杆菌中表达的现状与展望[J]. 中国生物工程杂志, 2014, 34(06): 90-97.

WANG Qing-long, LIU li, SHI Ji-ping, XUE Yong-chang, SUN Jun-song. Current Status and Prospects of the Expression of Butanol Pathway in Escherichia coli. China Biotechnology, 2014, 34(06): 90-97.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140613        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I06/90


[1] 刘娅,刘宏娟,张建安,等. 新型生物燃料—丁醇的研究进展. 现代化工,2008, 28(6): 28-33. Liu Y, Liu H J, Zhang J A, et al. Research progress in new biofuel butanol. Modern Chemical Industry, 2008, 28(6): 28-33.

[2] Ni Y, Sun Z H. Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China. Applied Microbiology and Biotechnology, 2009, 83(3): 415-423.

[3] Lee S Y, Park J H, Jang S H, et al. Fermentative butanol production by Clostridia. Biotechnology and Bioengineering, 2008, 101(2): 209-228.

[4] Mermelstein L D, Papoutsakis E T, Bennett G N. Metabolic engineering of Clostridium acetobutylicum ATCC 824 for increased solvent production by enhancement of acetone formation enzyme-activities using a synthetic acetone operon. Biotechnology and Bioengineering, 1993, 42(9): 1053-1060.

[5] 杨明,刘力强,牛昆,等. 丙酮丁醇发酵菌的分子遗传改造. 中国生物工程杂志,2009, 29(10): 109-114. Yang M, Liu L Q, Niu K, et al. Genetic features and modification of Clostridium acetobutylicum and Clostridium beijerinckii for acetone butanol and ethanol fermentation. China Biotechnology, 2009, 29(10): 109-114.

[6] Branduardi P, Longo V, Berterame N M, et al. A novel pathway to produce butanol and isobutanol in Saccharomyces cerevisiae. Biotechnology for Biofuels, 2013, 6: 68.

[7] Nielsen D R, Leonard E, Yoon S H, et al. Engineering alternative butanol production platforms in heterologous bacteria. Metabolic Engineering, 2009, 11(4/5): 262-273.

[8] Berezina O V, Zakharova N V, Brandt A, et al. Reconstructing the clostridial n-butanol metabolic patheway in Lactobacillus brevis. Applied Microbiology and Biotechnology, 2010, 87(2): 635-646.

[9] Truffaut N, Hubert J, Reysset G. Construction of shuttle vectors useful for transforming Clostridium acetobutylicum. FEMS Microbiology Letters, 1989, 58(1): 15-19.

[10] Mermelstein L D, Papoutsakis E T. In vivo methylation in Escherichia coli by the Bacillus subtilis phage phi 3T I methyltransferase to protect plasmids form restriction upon transformation of Clostridium acetobutylicum ATCC 824. Applied and Environmental Microbiology, 1993, 59(4): 1077-1081.

[11] Tyurin M, Padda R, Huang K, et al. Electrotransformation of Clostridium acetobutylicum ATCC 824 using high-voltage radio frequency modulated square pulses. Applied Microbiology, 2000, 88(2): 220-227.

[12] Dong H, Zhang Y, Dai Z, et al. Engineering Clostridium strain to accept unmethylated DNA. PLoS ONE, 2010, 5(2): e9038.

[13] Green E M, Bennett G N. Genetic manipulation of acid and solvent formation in Clostridium acetobutylicum ATCC 824. Biotechnology and Bioengineering, 1988, 58(2/3): 215-221.

[14] Desai R P, Papoutsakis E T. Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum. Applied and Environmental Microbiology, 1999, 65(3): 936-945.

[15] Tummala S B, Junne S G, Papoutsakis E T. Antisense RNA downregulation of coenzyme A transferase combined with alcohol-aldehyde dehydrogenase overexpression leads to predominantly alcohologenic Clostridium acetobutylicum fermentations. Bacteriology, 2003, 185(12): 3644-3653.

[16] Soucaille P, Figge R, Croux C. Process for chromosomal integration and DNA sequence replacement in clostridia. PCT/EP06/66997, 2006.

[17] Heap J T, Pennington O J, Cartman S T, et al. The ClosTron: a universal gene knock-out system for the genus Clostridium. Microbiological Methods, 2007, 70(3): 452-464.

[18] Shao L, Hu S, Yang Y, et al. Targeted gene disruption by use of a group II intron (targetron) vector in Clostridium acetobutylicum. Cell Research, 2007, 17(11): 963-965.

[19] 闫永亮,刘宏娟,张建安. 代谢工程在生物丁醇生产中的应用及研究进展. 现代化工,2012, 32(4): 25-31. Yan Y L, Liu H J, Zhang J A. Application and research progress of metabolic engineering in butanol production. Modern Chemical Industry, 2012, 32(4): 25-31.

[20] 戴宗杰,董红军,朱岩,等. 生物丁醇代谢工程的研究进展. 生物加工过程,2013, 11(2): 58-64. Dai Z J, Dong H J, Zhu Y, et al. Metabolic engineering for biobutanol production: a review. Chinese Journal of Bioprocess Engineering, 2013, 11(2): 58-64.

[21] 张艳,周鹏鹏,王丕祥,等. 丁醇合成途径关键酶基因在大肠杆菌中的克隆和表达. 微生物学报,2012, 52(5): 588-593. Zhang Y, Zhou P P, Wang P X, et al. Cloning and expression of key genes of butanol synthetic pathway in Escherichia coli. Acta Microbiologica Sinica, 2012, 52(5): 588-593.

[22] 张秋妍,郭亭,杜腾飞,等. 产丁醇重组大肠杆菌的构建及初步发酵. 南京工业大学学报(自然科学版),2012, 34(4): 118-122. Zhang Q Y, Guo T, Du T F, et al. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli for butanol production. Journal of Nanjing University of Technology (Natural Science Edition), 2012, 34(4): 118-112.

[23] Dellomonaco C, Clomburg J M, Miller E N, et al. Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals. Nature, 2011, 476: 355-359.

[24] Atsumi S, Hanai T, Liao J C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature, 2008, 451: 86-89.

[25] Shen C R, Liao J C. Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metabolic Engineering, 2008, 10(6): 312-320.

[26] Atsumi S, Liao J C. Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli. Applied and Environmental Microbiology, 2008, 74(24): 7802-7808.

[27] Trinh C T. Elucidating and reprogramming Escherichia coli metabolisms for obligate anaerobic n-butanol and isobutanol production. Applied and Environmental Microbiology, 2012, 95(4): 1083-1094.

[28] Becker D F, Fuchs J A, Banfield D K, et al. Characterization of wild-type and an active site mutant in E. coli of short-chain acyl-CoA dehydrogenase from Megasphaera elsdenii. Biochemistry, 1993, 32(40): 10736-10742.

[29] Bond-Watts B B, Bellerose R J, Chang M C. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nature Chemical Biology, 2011, 7(4): 222-227.

[30] Inui M, Suda M, Kimura S, et al. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Applied Microbiology and Biotechnology, 2008, 77(6): 1305-1316.

[31] 唐玮,李键,陈军,等. 大肠杆菌异源生产丁醇途径组装及启动子优化. 生物工程学报,2012, 28(11): 1328-1336. Tang W, Li J, Chen J, et al. Butanol pathway construction and promoter optimization in Escherichia coli. Chinese Journal of Biotechnology, 2012, 28(11): 1328-1336.

[32] 郑丽娟,陈少云,徐刚,等. 利用双启动子载体构建产异丁醇大肠杆菌. 中国生物工程杂志,2013, 33(8): 66-72. Zheng L J, Chen S Y, Xu G, et al. Engineering E. coli for isobutanol production by two-promoter vectors. China Biotechnology, 2013, 33(8): 66-72.

[33] Sun J, Hopkins R C, Jenney F E, et al. Heterologous expression and maturation of an NADP-dependent -hydrogenase: a key enzyme in biofuel production. PLoS ONE, 2010, 5(5): e10526.

[34] Atsumi S, Cann A F, Connor M R, et al. Metabolic engineering of Escherichia coli for 1-butanol production. Metabolic Engineering, 2008, 10: 305-311.

[35] Kim Y, Ingram L O, Shanmugam K T. Dihydrolipoamide dehydrogenase mutation alters the NADH sensitivity of pyruvate dehydrogenase complex of Escherichia coli K-12. Journal of Bacteriology, 2008, 190(11): 3851-3858.

[36] Lim J H, Seo S W, Kim S Y, et al. Model-driven rebalancing of the intracellular redox state for optimization of a heterologous n-butanol pathway in Escherichia coli. Metabolic Engineering, 2013, 20(1): 56-62.

[37] Shen C R, Lan E I, Dekishima Y, et al. Driving force enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Applied and Environmental Microbiology, 2011, 77(9): 2905-2915.

[38] Chen S K, Chin W C, Tsuge K, et al. Fermentation approach for enhancing 1-butanol production using engineered butanologenic Escherichia coli. Bioresource Technology, 2013, 145: 204-209.

[39] Jones D T, Woods D R. Acetone-butanol fermentation revisited. Microbiological Reviews, 1986, 50(4): 484-524.

[40] Lütgens M, Gottschalk G. Why a co-substrate is required for anaerobic growth of Escherichia coli on citrate. General Microbiology, 1980, 119(1): 63-70.

[41] 庞浩,裴建新,左文朴,等. 拜氏梭菌13-2发酵甘蔗渣水解液生产丁醇的研究. 生物技术,2011, 21(5): 79-82. Pang H, Pei J X, Zuo W P, et al. Fermentation hydrolyzate of sugarcane bagasse to butanol by Clostridium beijerinckii13-2. Biotechnology, 2011, 21(5): 79-82.

[42] Bowles L K, Ellefson W L. Effects of butanol on Clostridium acetobutylicum. Applied and Environmental Microbiology, 1985, 50(5): 1165-1170.

[43] Liu S Q, Qureshi N. How microbes tolerate ethanol and butanol. New Biotechnology, 2009, 26(3-4): 117-121.

[44] 毛邵明,章怀云. 丙酮丁醇梭菌丁醇耐受性. 生物工程杂志,2012, 32(9): 118-124. Mao S M, Zhang H Y. The advance of research on the butanol tolerance of Clostridium acetobutylicum. China Biotechnology, 2012, 32(9): 118-124.

[45] 张丽丽,沈兆冰,史吉平,等. 紫外诱变和丁醇驯化复合选育高产丁醇菌株. 中国酿造,2013, 32(5): 129-133. Zhang L L, Shen Z B, Shi J P, et al. Screening a butanol-high production strain by UV mutation and butane domestication. China Brewing, 2013, 32(5): 129-133.

[46] Zhao J, Yang S, Jiang W, et al. High titer butanol production using a mutant Clostridium beijerinckii achieved by adaptation in fibrous bed bioreactor. American Institute of Chemical Engineering, National Meeting, 2009.

[47] Lu C, Zhao J, Yang S T, et al. Fed-batch fermentation for n-butanol production from cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas stripping. Bioresource Technology, 2012, 104: 380-387.

[48] Atsumi S, Wu T Y, Machado I M, et al. Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli. Molecular Systems Biology, 2010, 6: 449.

[49] Knoshaug E P, Zhang M. Butanol tolerance in a selection of microorganisms. Applied Biochemistry and Biotechnology, 2009, 153(1-3): 13-20.

[50] Jeong H, Han J. Enhancing the 1-butanol tolerance in Escherichia coli through repetitive proton beam irradiation. Journal of the Korean Physical Society, 2010, 56(6): 2014-2045.

[51] Borden J R, Papoutsakis E T. Dynamics of genomic-library enrichment and identification of solvent tolerance genes for Clostridium acetobutylicum. Applied and Environmental Microbiology, 2007, 73(9): 3061-3068.

[52] Reyes L H, Almario M P, Kao K C. Genomic library screens for genes involved in n-butanol tolerance in Escherichia coli. PLoS One, 2011, 6(3): e17678.

[53] Reyes L H, Almario M P, Winkler J, et al. Visualizing evolution in real time to determine the molecular mechanisms of n-butanol tolerance in Escherichia coli. Metabolic Engineering, 2012, 14(5): 579-590.

[54] Reyes L H, Abdelaal A S, Kao K C. Genetic determinants for n-butanol tolerance in evolved Escherichia coli mutants: cross adaptation and antagonistic pleiotropy between n-butanol and other stressors. Applied and Environmental Microbiology, 2013, 79(17): 5313-5320.

[55] Rutherford B J, Dahl R H, Price R E, et al. Functional genomic study of exogenous n-butanol stress in Escherichia coli. Applied and Environmental Microbiology, 2010, 76(6): 1935-1945.

[56] Lin K H, Chin W C, Lee A H, et al. Genetic improvement of butanol tolerance in Escherichia coli by cell surface expression of fish metallothionein. Bioengineered Bugs, 2011, 2(1): 55-57.

[57] Scudiero R, Temussi P A, Parisi E. Fish and mammalian metallothioneins: a comparative study. Gene, 2005, 345(1): 21-26.

[1] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[2] 何若昱,林福玉,高向东,刘金毅. 信号肽在大肠杆菌分泌系统中的研究与应用进展[J]. 中国生物工程杂志, 2021, 41(5): 87-93.
[3] 吴弘轩, 杨金花, 沈培杰, 李清晨, 黄建忠, 祁峰. 利用大肠杆菌细胞工厂生产吲哚-3-乙酸的研究 *[J]. 中国生物工程杂志, 2021, 41(1): 12-19.
[4] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[5] 童梅,程永庆,刘金毅,徐晨. 促进大肠杆菌周质空间小分子抗体表达的菌种构建方法*[J]. 中国生物工程杂志, 2020, 40(5): 48-56.
[6] 杨丽,石晓宇,李文蕾,李剑,徐寒梅. 构建噬菌体展示抗体库过程中电穿孔法的条件优化[J]. 中国生物工程杂志, 2020, 40(4): 42-48.
[7] 乐易林,傅毓,倪黎,孙建中. 热稳定性丙酮酸:铁氧还蛋白氧化还原酶异源表达及其在乙酰辅酶A合成中的应用 *[J]. 中国生物工程杂志, 2020, 40(3): 72-78.
[8] 杭海英,刘春春,任丹丹. 流式细胞术的发展、应用及前景 *[J]. 中国生物工程杂志, 2019, 39(9): 68-83.
[9] 赵程程,孙长坡,常晓娇,伍松陵,林振泉. 大肠杆菌细胞裂解系统的构建及其在真菌毒素降解酶表达中的应用 *[J]. 中国生物工程杂志, 2019, 39(4): 69-77.
[10] 贺雪婷,张敏华,洪解放,马媛媛. 大肠杆菌丁醇耐受机制及耐受菌选育研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 81-87.
[11] 胡立强, 郑文, 钟艺, 杜丹, 杨浩, 龚萌. 抗病毒蛋白RC28在大肠杆菌和毕赤酵母中的表达及活性比较[J]. 中国生物工程杂志, 2017, 37(1): 14-20.
[12] 张宇萌, 童梅, 陆小冬, 米月, 莫婷, 刘金毅, 姚文兵. 大肠杆菌可溶性表达抗TNF-α Fab的工艺优化[J]. 中国生物工程杂志, 2016, 36(9): 31-37.
[13] 刘婷婷, 梁梓强, 梁士可, 郭技星, 王方海. 利用生物工程技术生产蜘蛛丝的研究进展[J]. 中国生物工程杂志, 2016, 36(5): 132-137.
[14] 张宇萌, 童梅, 陆小冬, 米月, 徐晨, 姚文兵. 提高大肠杆菌可溶性重组蛋白表达产率的研究进展[J]. 中国生物工程杂志, 2016, 36(5): 118-124.
[15] 武雪龙, 杨晓慧, 汪俊卿, 王瑞明. 蜜蜂NADPH-细胞色素P450还原酶基因在大肠杆菌中的表达及酶学特性分析[J]. 中国生物工程杂志, 2016, 36(12): 28-35.