Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (4): 95-100    DOI: 10.13523/j.cb.20140415
综述     
体内直接克隆大片段DNA的研究进展
朱莹1,2, 倪孟祥1, 方宏清2
1. 中国药科大学生命科学与技术学院 南京 210009;
2. 军事医学科学院生物工程研究所 北京 100071
Progress of in vivo Direct Cloning of Large DNA Fragments
ZHU Ying1,2, NI Meng-xiang1, FANG Hong-qing2
1. School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China ;
2. Beijing Institute of Biotechnology, Beijing 100071, China
 全文: PDF(477 KB)   HTML
摘要:

基因组序列的功能分析以及代谢途径的构建改造等都需要克隆目的DNA。获得大片段DNA序列的方法有构建和筛选基因文库,PCR扩增,体外大片段DNA合成和组装等,但体内重组直接克隆的方法在操作、克隆长片段和应用等方面更具优势。介绍了Red/ET重组介导的大片段DNA体内直接克隆的主要方法及其应用。

关键词: 直接克隆Red/ET体内重组    
Abstract:

Cloning of interest DNA is necessary for functional analysis of genome sequences and research on metabolically engineered pathways of modern producer strains. Methods to precisely clone large DNA fragments include library constructing and screening, PCR amplification and various different DNA assembly methods in vitro. In addition, direct cloning by homologous recombination in vivo has more advantages in the cloning and engineering of long DNA sequences. The main methods of direct cloning of large DNA fragments in vivo via Red/ET recombination system and its applications were introduced.

Key words: Direct cloning    Red/ET    In vivo recombination
收稿日期: 2014-02-25 出版日期: 2014-04-25
ZTFLH:  Q819  
基金资助:

国家重点基础研究发展计划(2011CBA00800)、国家自然科学基金(30870049,81373286)资助项目

通讯作者: 倪孟祥, 方宏清     E-mail: nimx_2000@aliyun.com;fanghongqing@vip.sina.com,fanghq@nic.bmi.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

朱莹, 倪孟祥, 方宏清. 体内直接克隆大片段DNA的研究进展[J]. 中国生物工程杂志, 2014, 34(4): 95-100.

ZHU Ying, NI Meng-xiang, FANG Hong-qing. Progress of in vivo Direct Cloning of Large DNA Fragments. China Biotechnology, 2014, 34(4): 95-100.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140415        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I4/95


[1] Sleight S C, Bartley B A, Lieviant J A, et al. In-Fusion BioBrick assembly and re-engineering. Nucleic Acids Research, 2010, 38(8): 2624-2636.

[2] Thieme F, Engler C, Kandzia R, et al. Quick and clean cloning: a ligation-independent cloning strategy for selective cloning of specific PCR products from non-specific mixes. PLoS One, 2011, 6(6): e20556.

[3] Haffke M, Viola C, Nie Y, et al. Tandem recombineering by SLIC cloning and cre-Loxp fusion to generate multigene expression constructs for protein complex research. Methods Mol Biol, 2013, 1073: 131-140.

[4] Demidov V V, Bukanov N O, Frank-Kamenetskii D. Duplex DNA capture. Curr Issues Mol Biol, 2000, 2(1): 31-35.

[5] Wang R Y, Shi Z Y, Chen J C, et al. Cloning large gene clusters from E. coli using in vitro single-strand overlapping annealing. ACS Synth Biol, 2012, 1(7): 291-295.

[6] Gaida A, Becker M M, Schmid C D, et al. Cloning of the repertoire of individual Plasmodium falciparum var genes using transformation associated recombination(TAR). PLoS One, 2011, 6(3): e17782.

[7] Yonemura I, Nakada K, Sato A, et al. Direct cloning of full-length mouse mitochondrial DNA using a Bacillus subtilis genome vector. Gene, 2007, 391(1-2): 171-177.

[8] Bian X, Huang F, Stewart F A, et al. Direct cloning, genetic engineering, and heterologous expression of the syringolin biosynthetic gene cluster in E.coli through Red/ET recombineering. Chembiochem, 2012, 13(13): 1946-1952.

[9] Zhang Y, Muyrers J P, Rientjes J, et al. Phage annealing proteins promote oligonucleotide-directed mutagenesis in Escherichia coli and mouse ES cells. BMC Mol Bil, 2003, 4:1.

[10] Zhang Y, Buchholz F, Muyrers J P, et al. A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet, 1998, 20(2): 123-128.

[11] Zhang Y, Muyrers J P, Testa G, et al. DNA cloning by homologous recombination in Escherichia coli. Nat Biotechnol, 2000, 18(12): 1314-1317.

[12] Sawitzke J A, Thomason L C, Costantino N, et al. Recombineering: in vivo genetic engineering in E. coli, S. enterica, and beyond. Methods Enzymol, 2007, 421: 171-199.

[13] Thomason L, Court D L, Bubunenko M, et al. Recombineering: genetic engineering in bacteria using homologous recombination. Curr Protoc Mol Biol, 2007,1:16.

[14] Lee E C, Yu D, Martinez de Velasco J, et al. A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics, 2001, 73(1): 56-65.

[15] Fu J, Bian X, Hu S, et al.Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nat Biotechnol, 2012, 30(5): 440-446.

[16] Court D L, Sawitzke J A, Thomason L C. Genetic engineering using homologous recombination. Annu Rev Genet, 2002, 36: 361-388.

[17] Nawy T. Molecular biology: capturing sequences for bioprospecting. Nat Methods, 2012, 9(6): 532.

[18] Cobb R E, Zhao H. Direct cloning of large genomic sequences. Nat Biotechnol, 2012, 30(5): 405-406.

[19] Sharan S K, Thomason L C, Kuznetsov S G, et al. Recombineering: a homologous recombination-based method of genetic engineering. Nat Protoc, 2009, 4(2): 206-223.

[20] Liu P, Jenkins N A, Copeland N G. A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res, 2003, 13(3): 476-484.

[21] Venken K J, He Y, Hoskins R A, et al.P: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science, 2006, 314(5806): 1747-1751.

[22] Kotzamanis G, Huxley C. Recombining overlapping BACs into a single larger BAC. BMC Biotechnol, 2004, 4:1.

[23] Datta S, Costantino N, Court D L. A set of recombineering plasmids for gram-negative bacteria. Gene, 2006, 379: 109-115.

[24] Wenzel S C, Gross F, Zhang Y, et al. Heterologous expression of a myxobacterial natural products assembly line in pseudomonas via Red/ET recombineering. Chem Biol, 2005, 12(3): 349-356.

[25] Chai Y, Shan S, Weissman K J, et al. Heterologous expression and genetic engineering of the tubulysin biosynthetic gene cluster using Red/ET recombineering and inactivation mutagenesis. Chem Biol, 2012,19(3):361-371.

[26] Ongley S E, Bian X, Zhang Y, et al. High-titer heterologous production in E. coli of lyngbyatoxin, a protein kinase C activator from an uncultured marine cyanobacterium. ACS Chem Biol, 2013, 8(9):1888-1893.

[27] Wenzel S C, Müller R. Recent developments towards the heterologous expression of complex bacterial natural product biosynthetic pathways. Curr Opin Biotechnol, 2005, 16(6): 594-606.

[28] Hager S, Lsch S, Noll S, et al. Red/ET recombination with chimeric oligonucleotides allows rapid generation of BAC transgenes harboring full-length or truncated huntingtin cDNA. Biotechniques, 2012, 31(6):1-7.

[29] Watanabe M, Kurome M, Matsunari H, et al. The creation of transgenic pigs expressing human proteins using BAC-derived, full-length genes and intracytoplasmic sperm injection-mediated gene transfer. Transgenic Res, 2012, 21(3): 605-618.

[30] Wingler L M, Cornish V W. Reiterative recombination for the in vivo assembly of libraries of multigene pathways. Proc Natl Acad Sci USA, 2011, 108(37): 15135-15140.

[1] 盛晓菁,齐晓雪,徐蕾,戚智青,刁勇. 基因克隆及组装技术的研究进展 *[J]. 中国生物工程杂志, 2020, 40(1-2): 133-139.
[2] 杨靖. 片段富集后以质粒为载体直接克隆构建文库[J]. 中国生物工程杂志, 1990, 10(1): 50-53.