Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (3): 132-137    DOI: 10.13523/j.cb.20140319
综述     
工业微生物的酸胁迫响应及其抵御策略
吕春微1, 李霜1,2, 徐晴1
1. 南京工业大学生物与制药工程学院 南京 211816;
2. 南京工业大学江苏省工业生物技术创新中心 南京 211816
Response and Resistance of Acid Stress in Industry Microbiology
WEI Lv-Chun1, LI Shuang1,2, XU Qing1
1. College of Life Science and Pharmacy, Nanjing University of Technology, Nanjing 211816, China;
2. Jiangsu Provincial Innovation Center for Industrial Biotechnology, Nanjing University of Technology, Nanjing 211816, China
 全文: PDF(460 KB)   HTML
摘要: 有机酸的积累在工业发酵过程中是一个较为普遍的现象,会导致发酵体系pH的降低,进而引起酸胁迫,限制细胞生长及目标产物的积累。针对这一问题,本文阐述了工业微生物应对酸胁迫所发生的生理变化,提出了微生物在酸性环境中可能的3种自我调节机制,概括总结了目前提高微生物酸耐受性的策略及各自的优缺点,指出了未来可能的发展方向,以期为提高工业微生物的酸耐受性提供思路。
关键词: 酸胁迫生理水平自我调节    
Abstract: The accumulation of organic acid in the process of microorganism fermentation leads to the decrease of pH in the fermentation system. It further results in acid stress and restricts the biomass and target products accumulation. This paper summarized self-adjusting mechanism and self-healing for the acid stress of microorganism. It aimed at making it easy to understand the acid stress mechanism and the relative physiology transformation law when the microorganism suffers from acid stress, offering ideas to improve the acid tolerance for the microorganism.
Key words: Acid stress    Physical level    Self-adjusting
收稿日期: 2013-12-26 出版日期: 2014-03-25
ZTFLH:  Q815  
基金资助: 国家高技术研究发展计划“863”计划(2011AA02A206),国家自然科学基金资助项目(21106065,21076104)资助项目
通讯作者: 徐晴     E-mail: xuqing357@njtech.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吕春微
李霜
徐晴

引用本文:

吕春微, 李霜, 徐晴. 工业微生物的酸胁迫响应及其抵御策略[J]. 中国生物工程杂志, 2014, 34(3): 132-137.

WEI Lv-Chun, LI Shuang, XU Qing. Response and Resistance of Acid Stress in Industry Microbiology. China Biotechnology, 2014, 34(3): 132-137.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140319        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I3/132

[1] 金君华, 张昊, 郭慧媛等.乳酸菌酸胁迫应答机制研究进展.中国乳业, 2011, 119: 32-35. Jin J, Zhang H, Guo H, et al. Acid stress responses in lactic acid bacteria. China Dairy, 2011, 119: 32-35.
[2] Bearson S, Bearson B, Foster J W. Acid stress responses in enterobacteria. FEMS Microbiology Letters, 1997, 147(2): 173-180.
[3] van de Guchte M, Serror P, Chervaux C, et al. Stress responses in lactic acid bacteria. Antonie van Leeuwenhoek, 2002, 82(1-4): 187-216.
[4] Andersson C, Petrova E, Berglund K, et al. Maintaining high anaerobic succinic acid productivity by product removal. Bioprocess and Biosystems Engineering, 2010, 33:711-718.
[5] Roa Engel C A, van Gulik W M, Marang L, et al. Development of a low pH fermentation strategy for fumaric acid production by Rhizopusoryzae. Enzyme and Microbial Technology, 2011, 48: 39-47.
[6] Boyd D A, Cvitkovitch D G, Beleiweis A S, et al. Defects in D-Alanyl-Lipoteichoic Acid Synthesis in Streptococcus mutans Results in Acid Sensitivity. Journal of Bacteriology, 2000, 182: 6055-6065.
[7] Fozo E M, Quivey R G. Shifts in the membrane fatty acid profile of Streptococcus mutansenhancesurvival in acidic environments. Applied and Environmental Microbiology, 2004, 70: 929-936.
[8] Mortensen H D, Gori K, Siegumfeldt H, et al. Intracellular pH homeostasis plays a role in the NaCl tolerance of DebaryomyceshansenⅡstrains. Applied Microbiology and Biotechnology, 2006, 71: 713-719.
[9] Abbott D A, Suir E, Duong G H, et al. Catalase overexpression reduces lactic acid-induced oxidative stress in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2009, 75(8):2320-2325.
[10] Azcarate-Peril M A, McAuliffe O, Altermann E, et al. Microarray analysis of a two-component regulatory system involved in acid resistance and proteolytic activity in Lactobacillus acidophilus. Applied and Environmental Microbiology, 2005, 71: 5794-5804.
[11] Broadbent J R, Larsen R L, Deibel V, et al. Physiological and transcriptional response of Lactobacillus casei ATCC 334 to acid stress. Journal of Bacteriology, 2010, 192: 2445-2458.
[12] de Angelis M, Bini L, Pallini V, et al. The acid-stress response in Lactobacillus sanfranciscensis CB. Microbiol, 2001, 147: 1863-1873.
[13] Sánchez B, Champomier-Vergès MC, del Carmen Collado M, et al. Low-pH adaptation and the acid tolerance response of Bifidobacteriumlongum biotype longum. Applied and Environmental Microbiology, 2007, 73: 6450-6459.
[14] Wu CD, Zhang J, Chen W, et al. A combined physiological and proteomic approach to reveal lactic-acid-induced alterations in Lactobacillus casei Zhang and its mutant with enhanced lactic acid tolerance. Applied and Environmental Microbiology, 2012, 93:707-722.
[15] Abdullah-Al-Mahin, Sugimoto S, Higashi C, et al. Improvement of multiple-stress tolerance and Lactic acid production in Lactococcuslactis NZ9000 under conditions of thermal stress by heterologous expression of Escherichia coli dnaK. Applied and Environmental Microbiology, 2010, 76(13):4277-4285.
[16] Wu R, Zhang W, Sun T, et al. Proteomic analysis of responses of a new probiotic bacterium Lactobacillus casei Zhang to low acid stress. International Journal of Food Microbiology, 2011, 147: 181-187.
[17] Liu L, Li Y, Shi ZH, et al. Enhancement of pyruvate productivity in Torulopsisglabrata: increase of NAD+ availability. Journal of Biotechnology, 2006, 126(2): 173-185.
[18] Sánchez C, Neves AR, Cavalheiro J, et al. Contribution of citrate metabolism to the growth of Lactococcuslactis CRL264 at low pH. Applied and Environmental Microbiology, 2008, 74(4):1136-1144.
[19] Zhang J, Fu R, Hugenholtz J, et al. Glutathione protects Lactococcus lactis against acid stress. Applied and Environmental Microbiology, 2007, 73: 5268-5275.
[20] Kim J E, Eom H J, Kim Y, et al. Enhancing acid tolerance of Leuconostoc mesenteroides with glutathione. Biotechnology Letters, 2012, 34: 683-687.
[21] Guan N, Liu L, Shi H, et al. Systems-level understanding of how Propionibacterium acidipropionici respond to propionic acid stress at the microenvironment levels: Mechanism and application. Journal of Biotechnology, 2013, 167(1): 56-63
[22] Wu C, Zhang J, Du G, et al. Aspartate protects Lactobacillus casei against acid stress. Applied Microbiology and Biotechnology, 2013, 97: 4083-4093.
[23] 徐桂红, 赵心清, 李宁等.锌离子提高絮凝酵母乙酸胁迫耐受性.化工学报, 2012, 63: 1823-1829. Xu G, Zhao X, Li N, et al. Improvement of acetic acid tolerance of self-flocculating yeast by zinc supplementation. CIESC Journal, 2012, 63: 1823-1829.
[24] Klein-Marcuschamer D, Stephanopoulos G. Assessing the potential of mutational strategies to elicit new phenotypes in industrial strains. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105: 2319-2324.
[25] Wang Y, Li Y, Pei X, et al. Genome-shuffling improved acid tolerance and L-lactic acid volumetric productivity in Lactobacillus rhamnosus. Journal of Biotechnology, 2007, 129:510-515.
[26] RalluF, Gruss A, Ehrlich D, et al. Acid and multistress resistant mutants of Lactococcuslactis: identification of intracellular stress signals. Molecular Microbiology, 2000, 35: 517-528.
[27] Ye L, Zhao H, Li ZH. Improved acid tolerance of Lactobacillus pentosus by error-prone whole genome amplification. Bioresource Technology, 2013, 135: 459-463.
[28] Zhang X, Liu S, Takano T. Overexpression of a mitochondrial ATP synthase small subunit gene (AtMtATP6) confers tolerance to several abiotic stresses in Saccharomyces cerevisiae and Arabidopsis thaliana. Biotechnology Letters, 2008, 30: 1289-1294.
[29] Song P, Chen CH, Tian Q Q, etal.Two-stage oxygen supply strategy for enhanced lipase production by Bacillus subtilis based on metabolic flux analysis. Biochemical Engineering Journal, 2013, 71(15):1-10.
[30] 高敏.利用廉价生物质原料发酵生产富马酸的研究.南京:南京工业大学, 2013. Gao M. Fumaric Acid Production by Inexpensive Renewable Materials by Rhizopus oryzae. Nanjing:Nanjing University of Technology, 2013.
[31] Zhang J, Wu C, Du G, et al. Enhanced acid tolerance in Lactobacillus casei by adaptive evolution and compared stress response during acid stress. Biotechnology and Bioprocess Engineering, 2012, 17(2): 283-289.
[32] Sauer U. Evolutionary engineering of industrially important microbial phenotypes. Advances in Biochemical Engineering/Biotechnology, 2001, 73: 129-169.
[33] 陈坚, 廷里, 周景文等.一种耐受高浓度丙酮酸及低 pH 的酵母菌及选育方法. 中国:201010181344.9, 2011-05-1. Chen J, Ting L, Zhou JW, et al. A well-tolerated high concentations of pyruvate and low pH breeding method in yeast. 201010181344.9, 2011-05-1.
[1] 王大慧, 许宏庆, 汪成富, 卫功元. 酸胁迫在提升富硒/GSH产朊假丝酵母性能中的作用[J]. 中国生物工程杂志, 2013, 33(11): 81-85.