Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (11): 61-69    DOI: 10.13523/j.cb.20151109
技术与方法     
HPLC-ELSD快速测定微藻中性脂
孟迎迎1,2, 王海涛1,3, 曹旭鹏1, 薛松1, 杨青2, 王伟良4
1. 中国科学院大连化学物理研究所海洋生物工程组 大连 116023;
2. 大连理工大学环境与生命科学学院 大连 116622;
3. 中国科学院大学 北京 100084;
4. 华东理工大学生物反应器工程国家重点实验室 上海 200237
Rapid Detection of Neutral Lipids by HPLC-ELSD in Microalgae
MENG Ying-ying1,2, WANG Hai-tao1,3, CAO Xu-peng1, XUE Song1, YANG Qing2, WANG Wei-liang4
1. Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
2. School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116622, China;
3. University of Chinese Academy of Sciences, Beijing 100084, China;
4. State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
 全文: PDF(1098 KB)   HTML
摘要:

溶剂法提取微藻油脂不同于植物种子油脂,它是全细胞的提取物,成分非常复杂,存在与甘油三酯(TAG)在色谱保留性质上相近的低极性物质,干扰TAG的测定。建立了基于二醇基柱及蒸发光检测器、正己烷-异丙醇为流动相的快速测定微藻中性脂的方法。对该方法进行评价,结果显示,测定的TAG、游离脂肪酸(FFA)、甘油二酯(DAG)、甘油一酯(MAG)线性相关系数均大于0.99,方法重复性好。湛江等鞭金藻及微拟球藻样品中TAG加标回收率为96.2%~113.1%,相对标准偏差(RSD)为0.46%~4.8%。将本方法测定湛江等鞭金藻及微拟球藻中TAG的含量并与传统的固相萃取(SPE)及常用的TLC/GC 测定TAG的方法进行比较,相比上述两种方法,该方法前处理简单、灵敏度高,可快速准确测定微藻中TAG的含量。

关键词: TAG定量中性脂TLC/GC湛江等鞭金藻微拟球藻    
Abstract:

The total lipids extracted from microalgae are different from the plant lipids, which are whole-cell extracts. The composition is very complex, existing low polar compounds similar with triglycerides (TAG) on chromatographic retention properties. A rapid and efficient method for determination of neutral lipids in microalgae using HPLC-ELSD was developed by optimizing the analytical columns. The chromatographic separation was performed on a Diol analytical column (250mm×4.6mm, 5μm) by the gradient elution with hexane and isopropanol. The calibration of TAG, free fatty acid (FFA), diacylglycerol (DAG) and moacylglycerol (MAG) showed good linearity. The recoveries of TAG spiked in I. zhangjiangensis and N. oceanica IMET1 were in the range of 96.2%~113.1% and the relative standard deviations 0.46%~4.8%. This method was applied to determine the TAG content of I. zhangjiangensis and N. oceanica IMET1 and compared with traditional solid-phase extraction (SPE) and the common used TLC/GC method. Compared with the above two methods, this method is simple and accurate for the determination of TAG in microalgae.

Key words: Neutral lipids    Isochrysis zhanjiangensis    TAG quantification    Nannochloropsis oceanica IMET1    TLC/GC
收稿日期: 2015-06-08 出版日期: 2015-11-24
ZTFLH:  Q542  
基金资助:

国家“863”计划资助项目(2012AA052101)

通讯作者: 薛松     E-mail: xuesong@dicp.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孟迎迎
王海涛
曹旭鹏
薛松
杨青
王伟良

引用本文:

孟迎迎, 王海涛, 曹旭鹏, 薛松, 杨青, 王伟良. HPLC-ELSD快速测定微藻中性脂[J]. 中国生物工程杂志, 2015, 35(11): 61-69.

MENG Ying-ying, WANG Hai-tao, CAO Xu-peng, XUE Song, YANG Qing, WANG Wei-liang. Rapid Detection of Neutral Lipids by HPLC-ELSD in Microalgae. China Biotechnology, 2015, 35(11): 61-69.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20151109        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I11/61

[1] Hu Q, Sommerfeld M, Jarvis E, et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J, 2008, 54(4): 621-639.
[2] Chisti Y. Biodiesel from microalgae. Biotechnol Adv, 2007, 25(3): 294-306.
[3] Breuer G, Lamers P P, Martens D E, et al. The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresour Technol, 2012, 124(337): 217-226.
[4] Beermann C, Green A, Möbius M, et al. Lipid class separation by HPLC combined with GC FA analysis: comparison of seed lipid compositions from different Brassica napus L. varieties. J Am Oil Chem Soc, 2003, 80(8): 747-753.
[5] Ruiz-Gutiérrez V, Pérez-Camino M C. Update on solid-phase extraction for the analysis of lipid classes and related compounds. J Chromatogr A, 2000, 885(1-2): 321-341.
[6] Chen W, Sommerfeld M, Hu Q. Microwave-assisted Nile red method for in vivo quantification of neutral lipids in microalgae. Bioresour Technol, 2011,102(1): 135-141.
[7] Isleten-Hosoglu M, Gultepe I, Elibol M. Optimization of carbon and nitrogen sources for C biomass and lipid production by Chlorella saccharophila under heterotrophic conditions and development of Nile red fluorescence based method for quantification of its neutral lipid content. Biochem Eng J, 2012, 61: 11-19.
[8] Romek M, Barbara G, Ewa K, et al. New technique to quantify the lipid composition of lipid droplets in porcine oocytes and pre-implantation embryos using Nile Red fluorescent probe. Theriogenology, 2011, 75(1): 42-54.
[9] Gao C F, Wang Y, Shen Y, et al. Oil accumulation mechanisms of the oleaginous microalga Chlorella protothecoides revealed through its genome, transcriptomes, and proteomes. BMC Genomics, 2014, 15: 582-595.
[10] Fan J H, Cui Y B, Wan M X, et al. Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors. Biotechnol Biofuels, 2014, 7:17-30.
[11] Lin J T. HPLC separation of acyl lipid classes. J Liq Chromatogr Relat Technol, 2007, 30(13-16): 2005-2020.
[12] Rodríguez-Alcalá L M, Fontecha J. Major lipid classes separation of buttermilk, and cows, goats and ewes milk by high performance liquid chromatography with an evaporative light scattering detector focused on the phospholipid fraction. J Chromatogr A, 2010, 1217(18): 3063-3066.
[13] McLaren D G, Miller P L, Lassman M E, et al. An ultraperformance liquid chromatography method for the normal-phase separation of lipids. Anal Biochem, 2011, 414(2): 266-272.
[14] Donot F, Cazals G, Gunata Z, et al. Analysis of neutral lipids from microalgae by HPLC-ELSD and APCI-MS/MS. J Chromatogr B, 2013,942-943(24): 98-106.
[15] Wang H T, Yao C H, Ai J N, et al. Identification of carbohydrates as the major carbon sink of the marine microalga Isochrysis zhangjiangensis (Haptophyta) and optimization of its productivity by nitrogen manipulation. Bioresour Technol, 2014, 171: 298-304.
[16] Wang H T, Meng Y Y, Cao X P, et al. Coordinated response of photosynthesis, carbon assimilation, and triacylglycerol accumulation to nitrogen starvation in the marine microalgae Isochrysis zhangjiangensis (Haptophyta). Bioresour Technol, 2015, 177(12): 282-288.
[17] Hibberd D J. Notes on taxonomy and nomenclature of the algal classes Eustigmatophyceae and Tribophyceae (synonym Xanthophyceae). Bot J Linn Soc, 1981, 82(2): 93-119.
[18] Campos H, Boeing W J, Dungan B N, et al. Cultivating the marine microalga Nannochloropsis salina under various nitrogen sources: effect on biovolume yields, lipid content and composition, and invasive organisms. Biomass Bioenergy, 2014, 66(7): 301-307.
[19] Rodolfi L, Zittelli G C, Bassi N, et al. Microalgae for oil: strain selection, induction of lpid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng, 2009, 102(1): 100-112.
[20] Van Vooren G, Le Grand F, Legrand J, et al. Investigation of fatty acids accumulation in Nannochloropsis oculata for biodiesel application. Bioresour Technol, 2012, 124(3): 421-432.
[21] Xiao Y, Zhang J T, Cui J T, et al. Metabolic profiles of Nannochloropsis oceanica IMET1 under nitrogen-deficiency stress. Bioresour Technol, 2013, 130: 731-738.
[22] Meng Y Y, Jiang J P, Wang H T, et al. The characteristics of TAG and EPA accumulation in Nannochloropsis oceanica IMET1 under different nitrogen supply regimes. Bioresour Technol, 2015, 179: 483-489.
[23] Kobayashi N, Noel E A, Barnes A, et al. Rapid detection and quantification of triacylglycerol by HPLC-ELSD in Chlamydomonas reinhardtii and Chlorella Strains. Lipids, 2013, 48(10): 1035-1049.
[24] Li X B, Moellering E R, Liu B S, et al. A galactoglycerolipid lipase is required for triacylglycerol accumulation and survival following nitrogen deprivation in Chlamydomonas reinhardtii. Plant Cell, 2012, 24(11): 4670-4686.
[25] Simionato D, Block M A, La Rocca N, et al. The response of Nannochloropsis gaditana to nitrogen starvation includes de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipids, and reorganization of the photosynthetic apparatus. Eukaryot Cell, 2013, 12(5): 665-676.

[1] 曹旭鹏, 艾江宁, 刘亚男, 周建男, 吴佩春, 薛松. 基于常压室温等离子体技术的金藻诱变筛选方法[J]. 中国生物工程杂志, 2014, 34(12): 84-90.
[2] 冯迪娜, 艾江宁, 刘亚男, 陈兆安, 薛松, 张卫. 含氮类培养基对海洋微藻Isochrysis zhanjiangensis 油脂与碳水化合物积累的影响[J]. 中国生物工程杂志, 2011, 31(10): 29-34.
[3] 付建红,石玉瑚,欧阳平凯,王俊华. 产低温脂肪酶菌株Geotrichum candidum ch-3的选育、发酵条件及酶学性质研究[J]. 中国生物工程杂志, 2007, 27(10): 22-27.