Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (05): 113-119    
综述     
木糖高效生物转化的新出路
徐勇1,2,3, 王荥1,2, 朱均均1,2, 勇强1,3, 余世袁1,3
1. 南京林业大学化工学院 南京 210037;
2. 江苏省生物质绿色燃料与化学品重点实验室 南京 210037;
3. 教育部林木遗传与生物技术省部共建重点实验室 南京 210037
A New Way for Bioconversion of Xylose in High Efficiency
XU Yong1,2,3, WANG Xun1,2, ZHU Jun-jun1,2, YONG Qiang1,3, YU Shi-yuan1,3
1. College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037,China;
2. Jiangsu Province Key laboratory of Green Biomass-based Fuel & Chemical, Nanjing 210037,China;
3. MEC Key Laboratory of Forest Genetics & Biotechnology, Nanjing 21037,China
 全文: PDF(440 KB)   HTML
摘要:

木糖的高效利用是影响木质纤维资源生物炼制经济效益的关键因素之一,也是构建其工业化生产体系的必要前提,但是木糖生物转化面临着重要的技术瓶颈,必须寻求新的思路。基于对木糖利用的现状及产业发展的综合分析,提出了木糖高效发酵制取木糖酸的新出路,论述了本领域首要的科学和技术问题是发酵抑制物的控制与消除;针对抑制物的问题,提出了细胞生理生化、代谢流分析及分子生物学的多层次和多尺度解析的研究方法;在此基础上,基于系统论的观点提出了菌种选育、原料预处理、抑制物控制与脱除、木糖酸高效发酵的技术集成的研究思路。

关键词: 木糖的生物转化木糖酸木质纤维素资源生物炼制    
Abstract:

Xylose utilization in high efficiency is a critical factor for the economic performance of lignocellulosic biomass biorefinry, and it is necessary for building of this industrial system. However, the novel ideas and thoughts for xylose utilization should be developed in that the bioconversion of xylose is now facing serious technical bottlenecks. Xylonic acid fermentation was brought forward as a new way for bioconversion of xylose from lignocellulosic biomass based on systemic analysis of its status and industry advancement. Controlling and elimination of inhibitors was illuminated as the primary problem of science and technology in xylonic acid fermentation, and then the approach to this challenge was put forward by a combined study of its cellular physiology and biochemistry, metabolism flux analysis and molecule biology with a multi-lever and multi-scale method. Furthermore, the tech-integration idea was brought up for industrial production of xylonic acid from xylose in a systemic view, involving development in steps of strains screening, material pretreatment, inhibitors controlling and removing and xylonic acid effective fermentation.

Key words: Bioconversion of xylose    Xylonic acid    Lignocellulosic biomass    Biorefinery
收稿日期: 2012-02-29 出版日期: 2012-05-25
ZTFLH:  Q81  
基金资助:

国家自然科学基金(31070514)、江苏省科技支撑项目(BE2011838)资助项目

通讯作者: 徐勇     E-mail: xuyong@nifu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

徐勇, 王荥, 朱均均, 勇强, 余世袁. 木糖高效生物转化的新出路[J]. 中国生物工程杂志, 2012, 32(05): 113-119.

XU Yong, WANG Xun, ZHU Jun-jun, YONG Qiang, YU Shi-yuan. A New Way for Bioconversion of Xylose in High Efficiency. China Biotechnology, 2012, 32(05): 113-119.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I05/113


[1] Rodriguez L C, O’Connell D. Biofuels: Balance the blend of food and fuel. Nat, 2011, 476: 283-283.

[2] Fairly P. Introduction: Next generation biofuels. Nat, 2011,474:2-5.

[3] Ragauskas A J, Williams C K, Davison B H, et al. The path forward for biofuels and biomaterials. Sci, 2006, 311: 484-48.

[4] Ohlrogge J, Allen D, Berguson B, et al. Driving on biomass. Sci, 2009, 324: 1019-1020.

[5] Waltz E. Biorefineries’ stimulus win. Nat Biotech, 2010, 28: 114-115.

[6] Grushkin D. Biofuel made in China. Nat Biotech, 2010, 28: 770-770.

[7] Cardona A, Sanchez O J. Fuel ethanol production: Process design trends and integration oppourtunities. Biores Technol, 2007, 98: 2415-2457.

[8] Zaldivar J, Nielsen J, Olsson L. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biothechnol, 2001, 56:17-34.

[9] Sanderson K. Lignocellulose: A chewy problem. Nat, 2011, 474:12-14.

[10] Mosier N, Wyman C, Dale B, et al. Features of promising technologies for pretratment of lignocellulosic biomass. Biores Technol,2005, 96: 673-686.

[11] Saddler J N. Bioconversion of forest and agricultural plant residues. Walingford: CAB International, 1993.

[12] Richard T L. Challenges in Scaling up biofuels infrastructure. Sci, 2010: 793-796.

[13] Wyman C E, Dale R E, Elander R T, et al. Coordinated development of leading biomass pretreatment technologies. Biores Technol, 2005, 96: 1959-1966.

[14] Yang B, Wyman C E. Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Bioref, 2008, 2: 26-40.

[15] Fernando S, Adhikari S, Chandrapal C, et al. Biorefineries: Current status, challenges, and future Direction. Energy Fuels, 2006, 20: 1727-1737.

[16] Biner J B, Blank J J, Cefali A V, et al. Synthesis of furfural from xylose and xylan. Envir Chem, 2010, 7(11): 1268-1272.

[17] Win D T. Furfural-gold from garbage. AU J T, 2005,8(4): 185-190.

[18] Chen X, Jiang Z H, Chen S F, et al. Microbial and bioconversion production of D-xylitol and Its detection and application. Int J Biol Sci, 2010, 6:834-844.

[19] Khan M Y, Dahot M U. Effect of various agriculture wastes and pure sugars on the production of single cell protein by Penicillium expansum.World Appl Sci J, 2010. 8: 80-84.

[20] Jeffries T W, Kurtman C P. Strain selection, taxonomy, and genetics of xylose-fermentation yeasts. Enz Microbiol Technol, 1994, 16: 922-932.

[21] Vleet J H, Jeffries T W. Yeast metabolic engineering for hemicellulosic ethanol Production. Curr Opin Biotechnol, 2009, 20:300-306.

[22] Stephanopoulos G. Challenges in engineering microbes for biofuels production. Sci, 2007, 315: 801-804.

[23] Jeffries T W, Griforiev I V, Griwood J, et al. Genome sequence of the lignocellulose-bioconvertion and xylose-fermenting yeast Pichia stipitis. Nat Biotechnol, 2007, 25: 317–326.

[24] 徐勇, 陈英, 勇强,等. 重组醇酒酵母的木糖发酵性能研究. 林产化学与工业, 2008, 28(1): 23-28. Xu Y,Chen Y, Yong Q, et al. Study on xylose-fermentationcapacity of recombinant Saccharomyces cerevisiae.Chem Indust Forest Prod, 2008, 28(1): 23-28

[25] 徐勇,范一民, 勇强, 等. 木糖发酵重组菌研究进展. 中国生物工程杂志. 2004, 24(6): 58-63. Xu Y,Fan Y M, Yong Q, et al. The advance of xylose-fermentation recombinant strains. China Biotechnology, 2004, 24(6): 58-63.

[26] Kenji O, Tsutomu T, Chiaki O. Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Appl Microbiol Biotech, 2012, 85(3): 413-423.

[27] Sauer M, Porro D, Mattanovich D. Microbial production of organic acids: expanding the markets. Trend Biotechnol, 2008, 26(2): 100-108.

[28] Chun B Y, Dair B, Macuch P J, et al. The development of cement and concrete additive. Appl Biochem Biotechnol, 2006, 129-132; 645-658.

[29] Toivari M H, Ruohonen L, Richard P, et al. Saccharomyces cerevisiae engineered to procuce D-xylonate. Appl Microbiol Biotechnol, 2010, 88: 751-760.

[30] 黎志勇,聂志奎,纪晓俊,等. 木糖酸的合成及应用研究进展. 化工进展, 2010, 29(8): 1525-1561. Li Z Y, Nie Z K, Ji X J, et al. Progress in xylonic acid production and application. Adv Chem Indust, 2010, 29(8): 1525-1561.

[31] Niu W,Molefe M N,Frost J W.Microbial synthesis of the energetic material precursor 1,2,4-butanetriol. J Amer Chem Soc, 2003, 125(4):12998-12999.

[32] 李国新, 何廷树, 伍勇华, 等. 葡萄糖酸钠对萘系高效减水剂塑化水泥浆体流动性的影响. 硅酸盐学报, 2010, 38(4): 768-773. Li G X, He T S, Wu Y H, et al. Effect of sodium gluconate on the fluidity and flow loss of pastes with B-naphthalene sulfonic acid-based superplasticize. J Chin Ceram Soc, 2010, 38(4):768-773.

[33] Selim T, Salem A. 2010 Global Cement industry: competitive and institutional and institutional dimensions. . http://mpra.ub.uni-muenchen.de/24464/.

[34] 中华人民共和国国家统计局. 中华人民共和国2009年国民经济和社会发展统计公报. . http://www.stats.gov.cn/tjgb/ndtjgb/qgndtjgb/t20100225_402622945.htm.

[35] Wong C M, Wong K H, Chen X D. Glucose oxidase: natural occurrence, function, properties and industrial applications. Appl Microbiol Biotechnol, 2008, 78(6): 927-938.

[36] Holscher T, Schliyer U, Merfort M, et al. Glucose oxidation and PQQ-dependent de hydrogenase in Gluconobacter oxydans. J Mol Microbiol Biotechnol, 2009, 16(1-2): 6-13.

[37] Ito K, Nakajima Y, Ichihara E, et al. D-3-hydroxybutyrate dehydrogenase from Pseudomonas fragi: molecular cloning of the enzyme gene and crystal structure of the enzyme. J Mol Biol, 2006, 355(4):722-733.

[38] Johnsen U, Schönheit P. Novel xylose dehydrogenase in the Halophilic Archaeon Haloarcula marismortui. J Bacteriol, 2004,186: 6198 - 6207.

[39] Buchert J, Viikari L, Linko M, et al. Production of xylonic acid by pseudomonas fragi. Biotech Let, 1986, 8(8): 541-546.

[40] Suzuki T, Onishi H.Oxidation and reduction of D-xylose by cell-free extract of Pichia quercuum.Appll Microbiol, 1973, 25(5): 850-852.

[41] Suzuki T, Onish H.The production of xylitol and D-xylonic acid by yeast. Agricul Biolog Chem, 1967, 31(10):1233-1236.

[42] Buchert J, Vikari L. The role of xylonolactone in xylonic acid production by pseudomonase fragi. Appl Microbiol Biotechnol, 1988, 27: 333-336.

[43] Buchert J, Puls J, Poutanen K. Comparison of pseudomonas fragi and gluconobacter oxydans for production of xylonic acid from hemicellulose hydrolyzates, Appl Microbiol Biotechnol, 1988, 28: 367-372.

[44] Meijnen J P, DeWinde J H, Ruijssenaars H J. Establishment of oxidative D-Xylose metabolism in Pseudomonas putida S12. Appl Environ Microbiol, 2009, 75: 2784-2791.

[45] Gupta A, Singh V K, Qazi G N, et al. Gluconobacter oxydans: its biotehchnology and application. J Mol Micerbiol,2001,3(3): 445-456.

[46] Yvonne N, Toivari M H, Penttilae M. Bioconversion of D-xylose to D-xylonate with Kluyveromyces lactis. Metab Engin, 2011, 13(4): 383-391.

[47] Prust C, Hoffmeister M, Liesegang H, et al. Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol, 2005, 23(2): 186-187.

[48] Krajewski V, Simic P, Mouncey N J, et al. Metabolic engineering of gluconobacter oxydans for improved growth rate and growth yield on glucose by elimination of gluconate formation. Appl Environ Microbiol, 2010, 76(13): 4369-4376.

[49] Nakashima K, Ito K, Nakajima Y, et al. Closed complex of the D-3-hydroxybutyrate dehydrogenase induced by an enantiomeric competitive inhibitor. J Biochem, 2009, 145(4):467-479.

[50] Stephens C, Christen B, Fuchs T, et al. Genetic analysis of a novel pathway for D-Xylose metabolism in Caulobacter crescentus. J Bacteriol, 2007, 189: 2181-2185.

[51] 徐勇,顾依娜,范丽,等. 杨木稀酸预处理液木糖发酵产乙醇工艺条件的研究. 林产化学与工业, 2010, 30(3): 19-24. Xu Y, Gu Y N, Fan L, et al. Study on the process conditions of xylose fermentation to fuel ethanol from poplar dilute-acid pretreatment solution.Chem Indust Forest Prod, 2010, 30(3): 19-24.

[52] 徐勇,焦杰,徐斌伟,等. 杨木屑低浓度硫酸中温预处理提取木糖及其发酵. 林产化学与工业, 2011, 31(5):11-17. Xu Y, Jiao J, Xu B W, et al. Extraction and fermentation of xylose from poplar sawdust by hot sulfuric acid pretreatment at low concentration.Chem Indust Forest Prod, 2011, 31(5): 11-17.

[1] 刘润生. 美国先进生物燃料技术政策与态势分析[J]. 中国生物工程杂志, 2010, 30(01): 117-122.