Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (5): 80-86    DOI: 10.13523/j.cb.20140511
综述     
HIV-1基因表达的转录调控
袁迪1, 杨怡姝1, 李泽琳1, 曾毅1,2
1 北京工业大学生命科学与生物工程学院 北京 100124;
2 中国疾病预防控制中心 病毒病预防控制所 北京 100052
Transcriptional Regulation of HIV-1 Gene Expression
YUAN Di1, YANG Yi-shu1, LI Ze-lin1, ZENG Yi1,2
1 College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, China;
2 National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
 全文: PDF(666 KB)   HTML
摘要:

高效抗逆转录病毒治疗(HAART)可以有效地抑制人类免疫缺陷病毒Ⅰ型(HIV-1)的复制及血浆病毒载量,延缓发病进程,改善、提高患者的生活质量和存活时间。但是,一旦停止治疗就会导致血浆病毒血症迅速反弹,HIV-1以原病毒的形式在静息记忆CD4+T等细胞中的持续存在是清除HIV-1的一个障碍。HIV-1基因转录的激活与阻抑决定了受感染细胞进入产毒性感染或潜伏感染。本文从原病毒整合位置与转录干扰、细胞转录因子与HIV-1启动子相互作用招募RNA聚合酶起始转录、转录的表观遗传调控和反式激活因子Tat及其相关蛋白促进转录延伸等方面探讨了HIV-1原病毒转录调控机制。

关键词: 人类免疫缺陷病毒Ⅰ型潜伏感染转录调控表观遗传调控    
Abstract:

Highly active antiretroviral therapy (HAART) can effectively suppress human immunodeficiency virus type 1 (HIV-1) replication and plasma viral load, delay the onset, and improve the life quality and survival time. But interruption of HAART leads to the rapid rebound of plasma viral load. Infected cells harboring HIV-1 proviral DNA, mainly resting memory CD4+T cells, are the obstacle for eradication. The transcriptional activation or suppression state determines the infected cells into productive infection or latent infection. This review discusses the intricate mechanism of the HIV-1 transcriptional regulation, such as the integration site and transcriptional interference, cellular transcription factors interacting with HIV-1 promoter to recruit RNA polymerase, epigenetic regulation of transcription, and trans-activating factor Tat and its associated proteins to promote transcriptional elongation.

Key words: Human immunodeficiency virus type 1    Latent infection    Transcriptional regulation    Epigenetic regulation
收稿日期: 2014-01-27 出版日期: 2014-05-25
ZTFLH:  Q78  
基金资助:

国家科技重大专项项目(2014ZX10005-002),北京市教委科技创新平台(PXM2014_014204_07_000046)资助项目

通讯作者: 杨怡姝     E-mail: yishu-y@bjut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

袁迪, 杨怡姝, 李泽琳, 曾毅. HIV-1基因表达的转录调控[J]. 中国生物工程杂志, 2014, 34(5): 80-86.

YUAN Di, YANG Yi-shu, LI Ze-lin, ZENG Yi. Transcriptional Regulation of HIV-1 Gene Expression. China Biotechnology, 2014, 34(5): 80-86.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140511        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I5/80


[1] Noë A, Plum J, Verhofstede C. The latent HIV-1 reservoir in patients undergoing HAART: an archive of pre-HAART drug resistance. J Antimicrob Chemother, 2005, 55(4): 410-412.

[2] Schröder A R, Shinn P, Chen H, et al. HIV-1 integration in the human genome favors active genes and local hotspots. Cell, 2002, 110:521-529.

[3] Han Y, Lassen K, Monie D, et al. Resting CD4+T cells from human immunodeficiency virus type I (HIV-1)-infected individuals carry integrated HIV-1 genomes within actively transcribed host genes. J Virol, 2004, 78:6122-6133.

[4] Lewinski M K, Yamashita M, Emerman M, et al. Retroviral DNA integration: viral and cellular determinants of target-site selection. PLoS Pathog, 2006, 2:e60.

[5] Meehan A M, Saenz D T, Morrison J H, et al. LEDGF/p75 proteins with alternative chromatin tethers are functional HIV-1 cofactors. PLoS Pathog, 2009, 5:e1000522.

[6] Greger I H, Demarchi F, Giacca M, et al. Transcriptional interference perturbs the binding of Sp1 to the HIV-1 promoter. Nucleic Acids Res, 1998, 26:1294-1301.

[7] Lenasi T, Contreras X, Peterlin B M. Transcriptional interference antagonizes proviral gene expression to promote HIV latency. Cell Host Microbe, 2008, 4:123-133.

[8] Crampton N, Bonass W A, Kirkham J, et al. Collision events between RNA polymerase in convergent transcription studied by atomic force microscopy. Nucleic Acids Res, 2006, 34(19):5416-5425.

[9] Gallastegui E, Millán-Zambrano G, Terme J M, et al. Chromatin reassembly factors are involved in transcriptional interference promoting HIV latency. J Virol, 2011, 85(7):3187-3202.

[10] Pereira L A, Bentley K, Peeters A, et al. A compilation of cellular transcription factor interaction with the HIV-1 LTR promoter. Nucleic Acids Res, 2000, 28(3):663-668.

[11] Tacheny A, Michel S, Dieu M, et al. Unbiased proteomic analysis of proteins interacting with the HIV-1 5'LTR sequence: role of the transcription factor Meis. Nucleic Acids Res, 2012, 40(21):e168.

[12] Miller-Jensen K, Skupsky R, Shah P S, et al. Genetic selection for context-dependent stochastic phenotypes: Sp1 and TATA mutations increase phenotypic noise in HIV-1 gene expression. PLoS Comput Biol, 2013, 9(7):e1003135.

[13] Williams S A, Chen L F, Kwon H, et al. NF-κB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation. EMBO J, 2006, 25(1):139-149.

[14] Coiras M, López-Huertas M R, Rullas J, et al. Basal shuttle of NF-κB/ IκB alpha in resting T lymphocytes regulates HIV-1 LTR dependent expression. Retrovirology, 2007, 4:56.

[15] Kim Y K, Bourgeois C F, Pearson R, et al. Recruitment of TFIIH to the HIV LTR is a rate-limiting step in the emergence of HIV from latency. EMBO J, 2006, 25(15): 3596-3604.

[16] Bates D L, Barthel K K, Wu Y, et al. Crystal structure of NFAT bound to the HIV-1 LTR tandem kappaB enhancer element. Structure, 2008, 16(5):684-694.

[17] Duverger A, Wolschendorf F, Zhang M, et al. An AP-1 binding site in the enhancer/core element of the HIV-1 promoter controls the ability of HIV-1 to establish latent infection. J Virol, 2013, 87(4):2264-2277.

[18] Henderson L J, Narasipura S D, Adarichev V, et al. Identification of novel T cell factor 4 (TCF-4) binding sites on the HIV long terminal repeat which associate with TCF-4, β-catenin, and SMAR1 to repress HIV transcription. J Virol, 2012, 86(17): 9495-9503.

[19] Rohr O, Aunis D, Schaeffer E. COUP-TF and Sp1 interact and cooperate in the transcriptional activation of the human immunodeficiency virus type 1 long terminal repeat in human microglial cells. J Biol Chem, 1997, 272(49):31149-31155.

[20] Jenuwein T, Allis C D. Translating the histone code. Science, 2001, 293:1074-1080.

[21] Legube G, Trouche D. Regulating histone acetylatransferases and deacetylases. EMBO Rep, 2003, 4(10):944-947.

[22] Coull J J, Romerio F, Sun J M, et al. The human factors YY1 and LSF repress the human immunodeficiency virus type-1 long terminal repeat via recruitment of histone deacetylase 1. J Virol, 2000, 74:6790-6799.

[23] Tyagi M, Karn J. CBF-1 promotes transcriptional silencing during the establishment of HIV-1 latency. EMBO J, 2007, 26(24): 4985-4995.

[24] du Chéné I, Basyuk E, Lin Y L, et al. Suv39H1 and HP1gamma are responsible for chromatin-mediated V-1 transcriptional silencing and post-integration latency. EMBO J, 2007, 26:424-435.

[25] Ding D, Qu X, Li L, et al. Involvement of histone methyltransferase GLP in HIV-1 latency through catalysis of H3K9 dimethylation. Virology, 2013, 440:182-189.

[26] Kauder S E, Bosque A, Lindqvist A, et al. Epigenetic regulation of HIV-1 latency by cytosine methylation. PLoS Pathog, 2009, 5:e1000495.

[27] Chávez L, Kauder S, Verdin E. In vivo, in vitro and in silico analysis of methylation of the HIV-1 provirus. Methods, 2011, 53(1):47-53.

[28] Palaclos J A, Pérez-Plñar T, Toro C, et al. Long-term nonprogressor and elite controller patients who control viremia have a higher percentage of methylation in their HIV-1 proviral promoters than aviremic patients receiving highly active antiretroviral therapy. J Virol, 2012, 86(23):13081-13084.

[29] Rafati H, Parra Maribel, Hakre S, et al. Repressive LTR nucleosome positioning by the BAF complex is required for HIV latency. PLoS Biol, 2011, 9(11):e1001206.

[30] Mahmoudi T. The BAF complex and HIV latency. Transcription, 2012, 3(4):171-176.

[31] Easley R, Carpio L, Dannenberg L, et al. Transcription through the HIV-1 nuleosomes: Effects of the PBAF complex in Tat activated transcription. Virology, 2010, 405(2):322-333.

[32] Sanghvi V R, Steel L F. RNA silencing as a cellular defense against HIV-1 infection: progress and issues. FASEB J, 2012, 26:3937-3945.

[33] Chiang K, Rice A P. MicroRNA-mediated restriction of HIV-1 in resting CD4+ T cells and monocytes. Viruses, 2012, 4:1390-1409.

[34] Omoto S, Fujii Y R. Regulation of human immunodeficiency virus 1 transcription by nef microRNA. J Gen Viro, 2005, 86:751-755.

[35] Klase Z, Kale P, Winograd R, et al. HIV-1 TAR element is processed by Dicer to yield a viral micro-RNA involved in chromatin remodeling of the viral LTR. BMC Mol Biol, 2007, 8:63.

[36] Carpio L, Klase Z, Coley W, et al. microRNA machinery is an integral component of drug-induced transcription inhibition in HIV-1 infection. J RNAi Gene Silencing, 2010, 6(1):386-400.

[37] Hidalgo-Estévez A M, González E, Punzón C, et al. Human immunodeficiency virus type 1 Tat increases cooperation between AP-1 and NFAT transcription factors in T cells. J Gen Viro, 2006, 87(6):1603-1612.

[38] Mahmoudi T, Parra M, Vries R G, et al. The SWI/SNF chromatin-remodeling complex is a cofactor for Tat transactivation of the HIV promoter. J Biol Chem, 2006, 281(29):19960-19968.

[39] Vardabasso C, Manganaro L, Lusic M, et al. The histone chaperone protein nucleosome assembly protein-1 (Hnap-1) binds HIV-1 Tat and promotes viral transcription. Retrovirology, 2008, 5:8.

[40] Massari S, Sabatini S, Tabarrini O. Blocking HIV-1 replication by targeting the Tat-hijacked transcriptional machinery. Curr Pharm Des, 2013, 19(10):1860-1879.

[41] Ott M, Geyer M, Zhou Q. The control of HIV transcription: Keeping RNA polymerase II on track. Cell Host Microbe, 2011, 10(5):426-435.

[42] Kiernan R E, Vanhulle C, Schiltz L, et al. HIV-1 Tat transcriptional activity is regulated by acetylation. EMBO J. 1999, 18(21):6106-6118.

[43] Col E, Caron C, Seigneurin-Berny D, et al. The histone acetyltransferase, hGCN5, interacts with and acetylates the HIV transactivator, Tat. J Biol Chem, 2001, 276(30):28179-28184.

[44] Dorr A, Kiermer V, Pedal A, et al. Transcriptional synergy between Tat and PCAF is dependent on the binding of acetylated Tat to the PACF bromodomain. EMBO J, 2002, 21(11):2715-2723.

[45] Pagans S, Pedal A, North B J, et al. SIRT1 regulates HIV transcription via Tat deacetylation. PLoS Biol, 2005, 3(2):e41.

[46] Crotti A, Lusic M, Lupo R, et al. Naturally occurring C-terminally truncated STAT5 is a negative regulator of HIV-1 expression. Blood, 2007, 109(12):5380-5389.

[47] Mosoian A, Teixeira A, High A A, et al. Novel function of prothymosin alpha as a potent inhibitor of human immunodeficiency virus type 1 gene expression in primary macrophages. J Virol, 2006, 80(18):9200-9206.

[48] Jochmann R, Thurau M, Jung S, et al. O-linked N-acetyl-glucosaminylation of Sp1 inhibits the human immunodeficiency virus type 1 promoter. J Virol, 2009, 83(8):3704-3718.

[49] Eberhardy S R, Goncalves J, Coelho S, et al. Inhibition of human immunodeficiency virus type 1 replication with artificial transcription factors targeting the highly conserved primer-binding site. J Virol, 2006, 80(6):2873-2883.

[50] Horiba M, Martinez L B, Buescher J L, et al. OKT18, a zinc-finger protein, regulates human immunodeficiency virus type 1 long terminal repeat through two distinct regulatory regions. J Gen Viro, 2007, 88(1):236-241.

[51] Savarino A, Mai A, Norelli S, et al. ‘Shock and kill’effects of class I-selective histone deacetylase inhibitors in combination with the glutathione synthesis inhibitor buthionine sulfoximine in cell line models for HIV-1 quiescence. Retrovirology, 2009, 6:52.

[52] Xing S, Siliciano R F. Targeting HIV latency: pharmacologic strategies toward eradication. Drug Discovery Today, 2013, 18(11/12):541-551.

[53] Archin N, Margolis D M. Attacking latent HIV provirus: from mechanism to therapeutic strategies. Curr Opin HIV AIDS, 2006, 1:134-140.

[1] 颜愈佳,邹玲. piRNA生物学起源及功能研究进展[J]. 中国生物工程杂志, 2021, 41(5): 45-50.
[2] 孟庆婷, 汤斌. 碳阻遏因子CRE对匍枝根霉产纤维素酶调控作用的研究[J]. 中国生物工程杂志, 2016, 36(3): 31-37.
[3] 代玉环, 徐尧, 罗颖, 代洋, 石伟林, 徐瑶. Myocardin调控心肌H9C2细胞Ca2+通道机制研究[J]. 中国生物工程杂志, 2016, 36(11): 1-6.
[4] 康学军, 杨怡姝. HIV-1潜伏感染体外实验模型研究进展[J]. 中国生物工程杂志, 2015, 35(8): 96-102.
[5] 徐军, 刘翠翠, 丁德武, 孙啸, 谢建明. 产电微生物基因调控网络的构建和特异性通路分析[J]. 中国生物工程杂志, 2014, 34(11): 42-46.
[6] 李嘉平, 张先文, 陈信波. 转录因子结合位点共现研究进展[J]. 中国生物工程杂志, 2012, 32(09): 87-94.
[7] 牟奕,孙激. 直接重整细胞核程序的诱导性多能干细胞研究进展[J]. 中国生物工程杂志, 2009, 29(08): 124-128.
[8] 李志艳,张涌. Alpha 1抗胰蛋白酶核基质附着区增强RNA聚合酶Ⅱ依赖的转录[J]. 中国生物工程杂志, 2007, 27(4): 39-43.
[9] 王淑艳,张愚. 慢病毒载体的设计及应用进展[J]. 中国生物工程杂志, 2006, 26(11): 70-75.
[10] 张利莉, 喻子牛. Sigma因子和启动子上游区在苏云金芽胞杆菌杀虫晶体蛋白基因表达调控中的作用[J]. 中国生物工程杂志, 2003, 23(3): 50-54.
[11] 王新力, 索桂英, 彭学贤. 植物基因转录的组合控制[J]. 中国生物工程杂志, 2001, 21(2): 40-45.
[12] 敖世洲. 真核基因转录调控因子的研究[J]. 中国生物工程杂志, 1991, 11(4): 17-22.
[13] 王身立. 转录调控水平上的基因多效性[J]. 中国生物工程杂志, 1981, 1(4): 4-8.